Odpovědět:
5 jednotek. Jedná se o velmi slavný trojúhelník.
Vysvětlení:
Li
Poté, co jsou délky stran kladné:
Vlož
Skutečnost, že trojúhelník se stranami 3, 4 a 5 jednotek je pravoúhlý trojúhelník, je znám již od dávných Egypťanů. To je Egyptský trojúhelník, věřil být používán starověkými Egypťany postavit pravé úhly - například, v Pyramids (http://nrich.maths.org/982).
Dvě rovnoramenné trojúhelníky mají stejnou délku základny. Nohy jednoho z trojúhelníků jsou dvakrát delší než nohy druhého. Jak zjistíte délku stran trojúhelníků, pokud jsou jejich obvody 23 cm a 41 cm?
Každý krok je tak dlouhý. Přeskočte kousky, které znáte. Základna je 5 pro obě Menší nohy jsou 9 pro každého Delší nohy jsou 18 kusů Někdy rychlá skica pomáhá při pozorování, co dělat Pro trojúhelník 1 -> a + 2b = 23 "" ........... .... Rovnice (1) Pro trojúhelník 2 -> a + 4b = 41 "" ............... Rovnice (2) ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ barva (modrá) ( „určit hodnotu“ b) pro rovnice (1) odečíst 2b z obou stran dávat : a = 23-2b "" ......................... Rovnice (1_a) Pro ro
Prokažte následující prohlášení. Ať je ABC jakýkoliv pravoúhlý trojúhelník, pravý úhel v bodě C. Nadmořská výška nakreslená od C do hypotézy rozděluje trojúhelník na dva pravé trojúhelníky, které jsou si navzájem podobné a původní trojúhelník?
Viz. níže. Podle otázky je DeltaABC pravý trojúhelník s / _C = 90 ^ @ a CD je nadmořská výška pro hypotézu AB. Důkaz: Předpokládejme, že / _ABC = x ^ @. So, úhelBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Nyní, CD kolmá AB. Takže úhelBDC = úhelADC = 90 ^ @. V DeltaCBD, úhelBCD = 180 ^ @ - úhelBDC - úhelCBD = 180 ^ @ - 90 ^ - x ^ @ = (90 -x) ^ @ Podobně úhelACD = x ^ @. Nyní, v DeltaBCD a DeltaACD, úhel CBD = úhel ACD a úhel BDC = úhelADC. Takže podle AA kritérií podobnosti, DeltaBCD ~ DeltaACD. Podobně můžem
Trojúhelník je rovnoramenný a akutní. Pokud jeden úhel trojúhelníku měří 36 stupňů, jaký je rozměr největšího úhlu trojúhelníku? Jaká je míra nejmenšího úhlu (trojúhelníků) trojúhelníku?
Odpověď na tuto otázku je snadná, ale vyžaduje určité matematické obecné znalosti a zdravý rozum. Isosceles trojúhelník: - trojúhelník jehož jediné dvě strany jsou se rovnat je nazýván rovnoramenným trojúhelníkem. Rovnoramenný trojúhelník má také dva stejné anděly. Akutní trojúhelník: - trojúhelník, jehož všichni andělé jsou větší než 0 ^ @ a menší než 90 ^ @, tj. Všichni andělé jsou akutní, nazývá se akutní trojúhelník. Daný trojú