Odpovědět:
Vysvětlení:
Délka dané strany je
Ze vzorce oblasti trojúhelníku:
Vzhledem k tomu, že se jedná o rovnoramenný trojúhelník, mohli bychom mít Případ 1. T, kde základnou je singulární strana, znázorněná na obr. (a) níže
Nebo bychom mohli mít Případ 2, kde základna je jedna ze stejných stran, znázorněná na Obr. (b) a (c) níže
Pro tento problém platí vždy Případ 1, protože:
#tan (alfa / 2) = (a / 2) / h # =># h = (1/2) a / tan (alfa / 2) #
Ale je tu podmínka, že Case 2 apllies:
#sin (beta) = h / b # =># h = bsin beta # Nebo
# h = bsin gamma # Od nejvyšší hodnoty
#sin beta # nebo#sin gamma # je#1# , nejvyšší hodnota# h # ve věci 2 musí být# b # .
V tomto problému je h delší než strana, na kterou je kolmá, takže pro tento problém platí pouze případ 1.
Řešení zvažuje Případ 1. T (Obr. (A))
# b ^ 2 = h ^ 2 + (a / 2) ^ 2 #
# b ^ 2 = (72 / sqrt (10)) ^ 2+ (sqrt (10) / 2) ^ 2 #
# b ^ 2 = 5184/10 + 10/4 = (5184 + 25) / 10 = 5209/10 # =># b = sqrt (520,9) ~ = 22,823 #
Dva rohy rovnoramenného trojúhelníku jsou na (1, 2) a (3, 1). Pokud je plocha trojúhelníku 12, jaké jsou délky stran trojúhelníku?
Měření tří stran je (2.2361, 10.7906, 10.7906) Délka a = sqrt ((3-1) ^ 2 + (1-2) ^ 2) = sqrt 5 = 2.2361 Plocha Delta = 12:. h = (Plocha) / (a / 2) = 12 / (2,2361 / 2) = 12 / 1.1181 = 10.7325 strana b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((1.1181) ^ 2 + (10.7325) ^ 2) b = 10.7906 Protože trojúhelník je rovnoramenný, třetí strana je také = b = 10.7906 Měření tří stran je (2.2361, 10.7906, 10.7906)
Dva rohy rovnoramenného trojúhelníku jsou na (1, 2) a (1, 7). Pokud je plocha trojúhelníku 64, jaké jsou délky stran trojúhelníku?
"Délka stran je" 25.722 na 3 desetinná místa "Délka základny je" 5 Všimněte si způsobu, jakým jsem ukázal svou práci. Matematika je částečně o komunikaci! Ať Delta ABC reprezentuje ten v otázce Nechť délka stran AC a BC je s Nechť vertikální výška je h Nechť oblast je a = 64 "jednotek" ^ 2 Nechť A -> (x, y) -> ( 1,2) Nechť B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ barva (modrá) ("Určení délky AB") barva (zelená) (AB "" = "" y_2-y_1 "&qu
Dva rohy rovnoramenného trojúhelníku jsou na (1, 2) a (3, 1). Pokud je plocha trojúhelníku 2, jaké jsou délky stran trojúhelníku?
Najděte výšku trojúhelníku a použijte Pythagoras. Začněte tím, že si vzpomenete vzorec pro výšku trojúhelníku H = (2A) / B. Víme, že A = 2, takže začátek otázky může být zodpovězen nalezením základny. Uvedené rohy mohou produkovat jednu stranu, kterou budeme nazývat základnou. Vzdálenost mezi dvěma souřadnicemi v rovině XY je dána vzorcem sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2). PlugX1 = 1, X2 = 3, Y1 = 2 a Y2 = 1 pro získání sqrt ((- 2) ^ 2 + 1 ^ 2) nebo sqrt (5). Vzhledem k tomu, že nemusíte radikály v práci z