Odpovědět:
Vysvětlení:
Chcete-li získat:
Od té doby, co máme
nebo
Spojení těchto nám dává:
Čísla x, y z splňují abs (x + 2) + abs (y + 3) + abs (z-5) = 1 a pak dokazují, že abs (x + y + z) <= 1?
Viz Vysvětlení. Připomeňme, že | (a + b) | le | a | + | b | ............ (hvězda). :. x + y + z | = | (x + 2) + (y + 3) + (z-5) |, le | (x + 2) | + | (y + 3) | + | (z-5 ) | .... [protože, (hvězda)], = 1 ........... [protože, "Dáno]". tj. (x + y + z) | le 1.
Nakreslete graf y = 8 ^ x udávající souřadnice všech bodů, kde graf prochází osami souřadnic. Popište plně transformaci, která transformuje graf Y = 8 ^ x na graf y = 8 ^ (x + 1)?
Viz. níže. Exponenciální funkce bez vertikální transformace nikdy nepřekročí osu x. Jako takový, y = 8 ^ x bude mít žádné x-zachycení. Bude mít průsečík y na y (0) = 8 ^ 0 = 1. Graf by se měl podobat následujícímu. graf {8 ^ x [-10, 10, -5, 5]} Graf y = 8 ^ (x + 1) je graf y = 8 ^ x posunut o 1 jednotku doleva, takže je to y- zachycení nyní leží na (0, 8). Také uvidíte, že y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Doufejme, že to pomůže!
Řešit x²-3 <3. To vypadá jednoduše, ale nemohl jsem dostat správnou odpověď. Odpověď je (- 5, -1) U (1, 5). Jak řešit tuto nerovnost?
Řešením je, že nerovnost by měla být abs (x ^ 2-3) <barva (červená) (2) Jako obvykle s absolutními hodnotami se dělí na případy: Případ 1: x ^ 2 - 3 <0 Pokud x ^ 2 - 3 <0 pak abs (x ^ 2-3) = - (x ^ 2-3) = -x ^ 2 + 3 a naše (opravená) nerovnost se stává: -x ^ 2 + 3 <2 Přidat x ^ 2-2 obě strany se dostanou 1 <x ^ 2 So x v (-oo, -1) uu (1, oo) Ze stavu případu máme x ^ 2 <3, takže xv (-sqrt (3), sqrt (3)) Proto: xv (-sqrt (3), sqrt (3)) nn ((-oo, -1) uu (1, oo)) = (-sqrt (3), -1) uu (1 , sqrt (3)) Případ 2: x ^ 2 - 3> = 0 Pokud x ^ 2 - 3>