Odpovědět:
Myslím, že máte na mysli "dokázat" ne "zlepšit". Viz. níže
Vysvětlení:
Zvažte RHS
Tak,
Takže RHS je nyní:
Nyní:
RHS je
QED.
Odpovědět:
Vysvětlení:
# ", aby se prokázalo, že jde o identitu, buď manipulovat s levou stranou" #
# "do tvaru pravé strany nebo manipulovat s pravou stranou" #
# "do tvaru levé strany" #
# "pomocí" barvy (modré) "goniometrické identity" #
# • barva (bílá) (x) tanx = sinx / cosx "a" sin ^ 2x + cos ^ 2x = 1 #
# "považovat za pravou stranu" #
# rArr1 / (1 + sin ^ 2t / cos ^ 2t) #
# = 1 / ((cos ^ 2t + sin ^ 2t) / cos ^ 2t) #
# = 1 / (1 / cos ^ 2t) #
# = 1xxcos ^ 2t / 1 = cos ^ 2t = "levá strana se tak ukázala" #
Jak dokázat (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Viz níže. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2)) 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Jak dokázat tuto identitu? sin ^ 2x + tan ^ 2x * sin ^ 2x = tan ^ 2x
Zobrazeno níže ... Použijte naše trig identity ... sin ^ 2 x + cos ^ 2 x = 1 => sin ^ 2 x / cos ^ 2 x + cos ^ 2 x / cos ^ 2 x = 1 / cos ^ 2 x => tan ^ 2 x + 1 = 1 / cos ^ 2 x Faktor levá strana vašeho problému ... => sin ^ 2 x (1 + tan ^ 2 x) => sin ^ 2 x (1 / cos ^ 2 x) = sin ^ 2 x / cos ^ 2 x => (sinx / cosx) ^ 2 = tan ^ 2 x
Částice je hozena přes trojúhelník od jednoho konce vodorovné základny a pastva vrchol padá na druhém konci základny. Jestliže alfa a beta jsou základní úhly a theta je úhel projekce, dokažte, že tan theta = tan alfa + tan beta?
Vzhledem k tomu, že částice je hozena s úhlem projekce theta přes trojúhelník DeltaACB od jednoho z jeho konců A horizontální základny AB zarovnané podél osy X a nakonec padá na druhý konec Bof základny, pasoucí se na vrcholu C (x, y) Nechť u je rychlost projekce, T je čas letu, R = AB je horizontální rozsah a t je čas, který částice dosáhne při C (x, y) Horizontální složka rychlosti projekce - > ucostheta Svislá složka rychlosti projekce -> usintheta S ohledem na pohyb pod gravitací bez odporu vzduchu můžeme