Odpovědět:
Objemový modul je
Vysvětlení:
Použijte rovnici
Tady, Hustota skály je
Rychlost
Proto,
Předpokládejme, že spustíte projektil na dostatečně vysokou rychlost, že může zasáhnout cíl na vzdálenost. Vzhledem k tomu, že rychlost je 34 m / s a vzdálenost vzdálenosti je 73 m, jaké jsou dva možné úhly, ze kterých by mohl být projektil spuštěn?
A1_ = 19,12 ° a_2 ~ = 70,88 °. Pohyb je parabolický pohyb, tj. Složení dvou pohybů: první, horizontální, je jednotný pohyb se zákonem: x = x_0 + v_ (0x) t a druhý je zpomalený pohyb se zákonem: y = y_0 + v_ (0y) t + 1 / 2g t ^ 2, kde: (x, y) je pozice v čase t; (x_0, y_0) je počáteční poloha; (v_ (0x), v_ (0y)) jsou složky počáteční rychlosti, to znamená pro trigonometrické zákony: v_ (0x) = v_0cosalpha v_ (0y) = v_0sinalpha (alfa je úhel, který vektorová rychlost tvoří s horizontální); t je čas; g j
Černá díra v galaxii M82 má hmotnost asi 500 krát větší než naše Slunce. Má přibližně stejný objem jako Měsíc Země. Jaká je hustota této černé díry?
Otázka je v hodnotách nesprávná, protože černé díry nemají objem. Pokud přijmeme, že pravda je hustota nekonečná. Na černých dírách je to, že ve formaci je gravitace taková, že všechny částice jsou pod ní rozdrceny. V neutronové hvězdě máte gravitaci tak vysokou, že protony jsou rozdrceny spolu s elektrony vytvářejícími neutrony. V podstatě to znamená, že na rozdíl od "normální" hmoty, která je na 99% prázdného prostoru, je neutronová hvězda téměř 100% pevná. To znamen
Voda unikající z obrácené kónické nádrže rychlostí 10 000 cm3 / min a zároveň je voda čerpána do nádrže konstantní rychlostí Pokud má nádrž výšku 6 m a průměr nahoře je 4 m a pokud hladina vody stoupá rychlostí 20 cm / min, když je výška vody 2 m, jak zjistíte, jakou rychlostí se voda čerpá do nádrže?
Nechť V je objem vody v nádrži v cm ^ 3; nechť h je hloubka / výška vody v cm; a r je poloměr povrchu vody (nahoře) v cm. Vzhledem k tomu, že nádrž je obrácený kužel, tak i množství vody. Protože nádrž má výšku 6 ma poloměr v horní části 2 m, podobné trojúhelníky znamenají, že frac {h} {r} = frac {6} {2} = 3 tak, že h = 3r. Objem invertovaného kužele vody je pak V = f {1} {3} r = {r} {3}. Nyní rozlišujeme obě strany s ohledem na čas t (v minutách), abychom získali frac {dV} {dt} = 3 pi r ^ {2} cdrac {dr} {dt} (pravidlo řetězu se