Odpovědět:
Vysvětlení:
Pokud se zabýváte nerovnostmi absolutní hodnoty, je třeba vzít v úvahu skutečnost, že pro reálná čísla funkce absolutní hodnoty vrací hodnotu kladnou hodnotu bez ohledu na znaménka čísla, které je uvnitř modulu.
To znamená, že máte dva případy ke zkoumání, ve kterém je výraz uvnitř modulu pozitivní a druhý, ve kterém by byl výraz uvnitř modulu negativní.
# x-2> 0 znamená | x-2 | = x-2 #
Nerovnost se stává
#x - 2> 3 znamená x> 5 #
# x-2 <0 znamená | x-2 | = - (x-2) #
Tentokrát máte
# - (x-2)> 3 #
# -x + 2> 3 #
# -x> 1 znamená x <-1 #
Takže pro každou hodnotu
Diskriminační kvadratická rovnice je -5. Která odpověď popisuje počet a typ řešení rovnice: 1 komplexní řešení 2 reálná řešení 2 komplexní řešení 1 skutečné řešení?
Vaše kvadratická rovnice má 2 komplexní řešení. Diskriminační kvadratická rovnice nám může poskytnout pouze informaci o rovnici tvaru: y = ax ^ 2 + bx + c nebo parabola. Protože nejvyšší stupeň tohoto polynomu je 2, nesmí mít více než 2 řešení. Diskriminační je prostě látka pod symbolem druhé odmocniny (+ -sqrt ("")), ale nikoli samotný symbol druhé odmocniny. + -sqrt (b ^ 2-4ac) Pokud je diskriminační, b ^ 2-4ac, menší než nula (tj. jakékoliv záporné číslo), pak byste měli záporný symbol p
X - y = 3 -2x + 2y = -6 Co lze říci o systému rovnic? Má jedno řešení, nekonečně mnoho řešení, žádné řešení nebo 2 řešení.
Nekonečně mnoho Máme dvě rovnice: E1: x-y = 3 E2: -2x + 2y = -6 Zde je naše volba: Pokud můžu udělat E1 přesně E2, máme dva výrazy stejné čáry a tak existuje nekonečně mnoho řešení. Pokud můžu udělat výrazy x a y v E1 a E2 stejné, ale skončit s různými čísly, které jsou stejné, čáry jsou paralelní, a proto neexistují žádná řešení.Pokud nemohu udělat ani jednu z nich, pak mám dvě různé linie, které nejsou paralelní, takže někde bude bod průniku. Neexistuje žádný způsob, jak mít dvě rovné čár
Použijte diskriminační k určení počtu a typu řešení, která má rovnice? x ^ 2 + 8x + 12 = 0 skutečné řešení B. skutečné řešení C. dvě racionální řešení D. dvě iracionální řešení
C. dvě racionální řešení Řešení kvadratické rovnice a * x ^ 2 + b * x + c = 0 je x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In uvažovaný problém, a = 1, b = 8 a c = 12 nahrazení, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 nebo x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 a x = (-8 - 4) / 2 x = (- 4) / 2 a x = (-12) / 2 x = - 2 a x = -6