Která z těchto čísel jsou racionální: 17.1591 ..., -19, pi, 13/27, 9. t

Která z těchto čísel jsou racionální: 17.1591 ..., -19, pi, 13/27, 9. t
Anonim

Odpovědět:

#-19,13/27# a # 9.bar5 # jsou pouze racionální čísla. #17.1591…# a # pi # jsou iracionální čísla.

Vysvětlení:

Racionální čísla jsou ta čísla, která mohou být zapsána jako poměr dvou celých čísel. První celé číslo se nazývá čitatel a druhé celé číslo je nenulové a nazývá se jmenovatel.

Tady #-19# lze psát jako #19/(-1)# nebo #(-19)/1# nebo #38/(-2)# a proto je racionální číslo.

Podobně #13/27# také je racionální číslo, ale # pi # není racionální číslo, je iracionální.

Jakékoliv číslo napsané v desetinné formě je racionální, pokud

  1. Číslo má po desetinné tečce omezené číslo, tj. končí a nekončí nekonečně. Například #2.4375=24375/10000=39/16#
  2. Nebo číslo nebo řetězec čísel se neustále opakuje po desetinné čárce nebo po některých číslicích za desetinnou čárkou. Například # 0.bar (63) 6363 …. = 7/11 # a # 2.5bar (142857) 142857 ….. = 88/35 #. Ve druhém po #5# šest číslic se nekonečně opakuje.

v # 9.bar5 #, #5# opakuje nekonečně. Li # 9.bar5 = x # pak # 10x = 95.bar5 # a tudíž # 9x = 86 # a # x = 86/9 # tj. # 9.bar5 = 86/9 #.

v #17.1591…#, není tam žádný náznak opakování čísel, a proto je iracionální. Podobně # pi = 3.1415926535897932384626433832795 …. # je iracionální číslo.