Vaše doména je všech zákonných (nebo možných) hodnot
Doména
Doména funkce zahrnuje všechny možné hodnoty
Takže vaše doména je
Rozsah
Vaše nabídka je zčásti dána právními hodnotami
graf {sqrt (4-x ^ 2) -2,1,2,1, -1,2,5}
Toto je horní polovina kruhu a rozsah je
{X
{y
Protože radikální znamení, pro f (x) být skutečná funkce,
{y
Nechť f (x) = x-1. 1) Ověřte, že f (x) není ani sudé ani liché. 2) Lze f (x) zapsat jako součet sudé funkce a liché funkce? a) Pokud ano, vystavte řešení. Existuje více řešení? b) Pokud ne, ukažte, že to není možné.
Nechť f (x) = | x -1 |. Kdyby f byly sudé, pak f (-x) by se rovnalo f (x) pro všechny x. Jestliže f bylo liché, pak f (-x) by se rovnalo -f (x) pro všechny x. Všimněte si, že pro x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Protože 0 není rovno 2 nebo -2, f není ani sudé ani liché. Může být f napsáno jako g (x) + h (x), kde g je sudé a h je liché? Pokud tomu tak bylo, pak g (x) + h (x) = | x - 1 |. Volejte toto prohlášení 1. Nahraďte x za -x. g (-x) + h (-x) = | -x - 1 | Protože g je sudý a h je lichý, máme: g (x) - h (x) = | -x - 1 | Vyvolejte toto
Jak zjistíte doménu a rozsah kusové funkce y = x ^ 2, pokud x <0, y = x + 2, pokud 0 x 3, y = 4, pokud x> 3?
"Doména:" (-oo, oo) "Rozsah:" (0, oo) Nejlepším způsobem je začít graficky zpracovávat jednotlivé funkce tak, že si nejprve přečtete příkazy "pokud" a budete s největší pravděpodobností zkrátit šanci na chybu. tak. Jak již bylo řečeno, máme: y = x ^ 2 "pokud" x <0 y = x + 2 ", pokud" 0 <= x <= 3 y = 4 ", pokud" x> 3 je velmi důležité sledovat vaše "větší / méně než nebo rovna "znaménkům, protože dva body na stejné doméně to udělají tak, že graf není funk
Jestliže funkce f (x) má doménu -2 <= x <= 8 a rozsah -4 <= y <= 6 a funkce g (x) je definována vzorcem g (x) = 5f ( 2x)) pak co je doména a rozsah g?
Níže. K nalezení nové domény a rozsahu použijte základní transformace funkcí. 5f (x) znamená, že funkce je vertikálně roztažena o faktor pět. Proto bude nový rozsah překlenout interval, který je pětkrát větší než originál. V případě f (2x) se na funkci aplikuje horizontální roztažení o faktor poloviny. Proto jsou konce domény na polovinu. Et voilà!