Odpovědět:
Doménou jsou všechna reálná čísla kromě -1 a 3.
Vysvětlení:
Doménou funkce jsou všechny body, kde je funkce definována, protože nemůžeme dělit nulu, ale kořeny jmenovatele nejsou v doméně, pak:
Proto je doménou všechna reálná čísla kromě -1 a 3.
Ukažte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jsem trochu zmatený, když udělám Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný jako cos (180 ° -theta) = - costheta in druhý kvadrant. Jak mám doložit otázku?
Viz níže. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Co je doménou kombinované funkce h (x) = f (x) - g (x), je-li doména f (x) = (4,4,5] a doména g (x) je [4, 4,5 )?
Doména je D_ {f-g} = (4,4,5). Viz vysvětlení. (f-g) (x) lze vypočítat pouze pro ty x, pro které jsou definovány jak f, tak i g. Můžeme tedy napsat: D_ {f-g} = D_fnnD_g Zde máme D_ {f-g} = (4,4,5] nn [4,4,5] = (4,4,5)
Co je doménou funkce: (2x-1) / (x² + 2)?
D_f = R x ^ 2 + 2> 0 pro AAx v R, takže zde nejsou body nespojitosti a: D_f = R