Dva rohy trojúhelníku mají úhly (7 pi) / 12 a pi / 6. Pokud má jedna strana trojúhelníku délku 2, jaký je nejdelší možný obvod trojúhelníku?

Dva rohy trojúhelníku mají úhly (7 pi) / 12 a pi / 6. Pokud má jedna strana trojúhelníku délku 2, jaký je nejdelší možný obvod trojúhelníku?
Anonim

Odpovědět:

Nejdelší možný obvod P = 8.6921

Vysvětlení:

Dáno #: / _ A = pi / 6, / _B = (7pi) / 12 #

# / _C = (pi - pi / 6 - (7pi) / 12) = (pi) / 4 #

Abychom dosáhli nejdelšího obvodu, měli bychom uvažovat stranu odpovídající úhlu, který je nejmenší.

#a / sin A = b / sin B = c / sin C #

# 2 / sin (pi / 6) = b / sin ((7pi) / 12) = c / sin ((pi) / 4) #

#:. b = (2 * sin ((7pi) / 12) / sin (pi / 6) = 3,88637 #

#c = (2 * sin (pi / 4)) / sin (pi / 6) = 2,8284 #

Nejdelší možný obvod #P = 2 + 3.8637 + 2.8284 = 8.6921 #