Pomocí Pythagoreanovy věty, jak zjistíte délku nohy pravého trojúhelníku, pokud je druhá noha dlouhá 8 stop a hypotéza je 20?
Délka jiné nohy pravého trojúhelníku je 18.33 noh. Podle Pythagorasovy věty, v pravoúhlém trojúhelníku, čtverec hypotézy je se rovnat součtu čtverců jiných dvou stran. Zde v pravoúhlém trojúhelníku je předpona 20 stop a jedna strana je 8 stop, druhá strana je sqrt (20 ^ 2-8 ^ 2) = sqrt (400-64) = sqrt336 = sqrt (2xx2xx2xx2xx3xx7) = 4sqrt21 = 4xx4 .5826 = 18,3304 říká 18,33 stop.
Pomocí Pythagoreanovy věty, jak zjistíte délku strany a dané b = 11, c = 17?
A = 2sqrt (42) ~ ~ 12.9614 Pythagoreanův teorém je a ^ 2 + b ^ 2 = c ^ 2 daný b = 11, c = 17 a ^ 2 + (11) ^ 2 = (17) ^ 2 a ^ 2 + 121 = 289 a ^ 2 = 289 - 121 = 168 sqrt (a ^ 2) = sqrt (168) a = 2sqrt (42) ~ ~ 12,9614
Pomocí Pythagoreanovy věty, jak zjistíte délku strany a danou stranu c = 40 a b = 20?
20sqrt3 za předpokladu, že c je hypotéza, máme ^ 2 + b ^ 2 = c ^ 2: .a ^ 2 + 20 ^ 2 = 40 ^ 2 => a ^ 2 = 40 ^ 2-20 ^ 2 a ^ 2 = ( 40 + 20) (4-20) = 60xx20 = 1200 a = sqrt (1200) = 20sqrt3