Funkce f je taková, že f (x) = a ^ 2x ^ 2-ax + 3b pro x <1 / (2a) Kde a a b jsou konstantní pro případ, kdy a = 1 a b = -1 Najít f ^ - 1 (cf a najít jeho doménu I znám doménu f ^ -1 (x) = rozsah f (x) a je -13/4, ale nevím směr znaménka nerovnosti?
Viz. níže. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Rozsah: Vložit do tvaru y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimální hodnota -13/4 To nastane při x = 1/2 Tak rozsah je (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Pomocí kvadratického vzorce: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x)) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 S trochou přemýšlení můžeme vidět, že pro doménu máme požadovanou inverzi : f ^ (- 1) (x) = (1-sqrt (4x + 13))
Celkový počet vstupenek pro dospělé a prodaných vstupenek pro studenty byl 100. Cena pro dospělé byla 5 USD za letenku a cena pro studenty byla 3 USD za jízdenku v celkové výši 380 USD. Kolik z nich bylo prodáno?
Prodáno bylo 40 vstupenek pro dospělé a 60 vstupenek pro studenty. Počet prodaných letenek pro dospělé = x Počet prodaných vstupenek pro studenty = y Celkový počet prodaných vstupenek pro dospělé a vstupenek pro studenty byl 100. => x + y = 100 Cena pro dospělé byla 5 USD za jízdenku a cena pro studenty byla 3 USD za vstupenku. jízdenka Celkové náklady x jízdenek = 5x Celkové náklady jízdenek y = 3y Celková cena = 5x + 3y = 380 Řešení obou rovnic, 3x + 3y = 300 5x + 3y = 380 [Odčítání obou] => -2x = -80 = >
Jim chodí do kina každý pátek večer se svými přáteli. Minulý týden si zakoupili 25 vstupenek pro dospělé a 40 vstupenek pro mládež za celkovou cenu 620 USD. Tento týden utratí 560 dolarů na 30 dospělých a 25 letenek pro mládež. jaká je cena jednoho dospělého a jednoho lístku pro mládež?
"dospělý" = $ 12 "a mládež" = $ 8 "nechť x je cena a vstupenka pro dospělé a" "y jsou náklady na lístek pro mládež" 25x + 40y = 620to (1) 30x + 25y = 560to (2) " můžeme tyto hodnoty zjednodušit dělením obou rovnic "" o 5 "(1) to5x + 8y = 124to (3) (2) to6x + 5y = 112to (4)" k odstranění x násobení "(3)" o 6 a " (4) "o 5" (3) až 30x + 48y = 744to (5) (4) až 30x + 25y = 560to (6) "odečíst termín podle termínu pro odstranění x" (5) - (6) (30x-30x) + (48y-25y)