Jak píšete částečný rozklad zlomků racionálního výrazu (3x) / (x ^ 3 - 2x ^ 2 - x + 2)?

Jak píšete částečný rozklad zlomků racionálního výrazu (3x) / (x ^ 3 - 2x ^ 2 - x + 2)?
Anonim

Odpovědět:

# (3x) / (x ^ 3-2x ^ 2-x + 2) = 2 / (x-2) -3 / (2 (x-1)) - 1 / (2 (x + 1)) #

Vysvětlení:

Pro vyjádření daného výrazu do dílčích zlomků uvažujeme o faktorizaci jmenovatele.

Pojmenujme jmenovatele

#color (modrá) (x ^ 3-2x ^ 2-x + 2) #

# = barva (modrá) (x ^ 2 (x-2) - (x-2)) #

# = barva (modrá) ((x-2) (x ^ 2-1)) #

Použití identity polynomů:

#color (oranžová) (a ^ 2-b ^ 2 = (a-b) (a + b)) #

my máme:

#color (modrá) (x ^ 3-2x ^ 2-x + 2) #

# = barva (modrá) ((x-2) (x ^ 2-1 ^ 2)) #

# = barva (modrá) ((x-2) (x-1) (x + 1)) #

Rozkladme racionální výraz nálezem # A, B a C #

#color (hnědý) (A / (x-2) + B / (x-1) + C / (x + 1)) = barva (zelená) ((3x) / (x ^ 3-2x ^ 2-x +2)) #

#color (hnědý) (A / (x-2) + B / (x-1) + C / (x + 1)) #

# = barva (hnědá) ((A (x-1) (x + 1)) / (x-2) + (B (x-2) (x + 1)) / (x-1) + (C (x-2) (x-1)) / (x + 1)) #

# = (A (x ^ 2-1)) / (x-2) + (B (x ^ 2 + x-2x-2)) / (x-1) + (C (x ^ 2-x-2x) +2)) / (x + 1) #

# = (A (x ^ 2-1)) / (x-2) + (B (x ^ 2-x-2)) / (x-1) + (C (x ^ 2-3x + 2)) / (x + 1) #

# = (Ax ^ 2-A + Bx ^ 2-Bx-2B + Cx ^ 2-3Cx + 2C) / ((x-2) (x-1) (x + 1) #

# = barva (hnědá) (((A + B + C) x ^ 2 + (- B-3C) x + (- A-2B + 2C)) / ((x-2) (x-1) (x + 1)) #

# = barva (hnědá) (((A + B + C) x ^ 2 + (- B-3C) x + (- A-2B + 2C)) / ((x-2) (x-1) (x + 1)) = barva (zelená) ((3x) / (x ^ 3-2x ^ 2-x + 2)) #

Pak, #rArrcolor (hnědá) ((A + B + C) x ^ 2 + (- B-3C) x + (- A-2B + 2C) = barva (zelená) (3x) #

Máme systém tří rovnic se třemi neznámými # A, B a C #

# A + B + C = 0 # eq1

# -B-3C = 3 # eq2

# -A-2B + 2C = 0 # eq3

Začíná řešit systém

eq2:# -B-3C = 3rArr-B = 3 + 3CrArrcolor (červená) (B = -3-3C) #

Nahrazení # B # v eq1 máme:

# A + B + C = 0 #

# A-3-3C + C = 0rArrA-3-2C = 0rArrcolor (červená) (A = 3 + 2C) #

Nahrazení #B a C #v eq3 máme:

# -A-2B + 2C = 0 # eq3

# rArr- (barva (červená) (3 + 2C)) - 2 (barva (červená) (- 3-3C)) + 2C = 0 #

# rArr-3-2C + 6 + 6C + 2C = 0 #

# rArr + 3 + 6C = 0 #

# rArr6C = -3 #

#rArrcolor (červená) (C = -1 / 2) #

#color (červená) (B = -3-3C) = - 3-3color (červená) (- 1/2) = - 3 + 3/2 #

#color (červená) (B = -3 / 2 #

#color (červená) (A = 3 + 2C) = 3 + 2 (-1/2) = 3-1 #

#color (červená) (A = 2) #

Nahraďte hodnoty:

#color (zelená) ((3x) / (x ^ 3-2x ^ 2-x + 2)) = barva (hnědá) (barva (červená) 2 / (x-2) + (barva (červená) (- 3 / 2)) / (x-1) + barva (červená) ((- 1/2)) / (x + 1)) #

Proto, # (3x) / (x ^ 3-2x ^ 2-x + 2) = 2 / (x-2) -3 / (2 (x-1)) - 1 / (2 (x + 1)) #