Odpovědět:
Vaše kvadratická rovnice má
Vysvětlení:
Diskriminační kvadratická rovnice nám může poskytnout pouze informace o rovnici formuláře:
Protože nejvyšší stupeň tohoto polynomu je 2, nesmí mít více než 2 řešení.
Diskriminační je prostě ta věc pod symbol odmocniny (
Pokud je diskriminující,
Proto musí mít vaše kvadratická rovnice
Je známo, že rovnice bx ^ 2- (a-3b) x + b = 0 má jeden skutečný kořen. Prokázat, že rovnice x ^ 2 + (a-b) x + (ab-b ^ 2 + 1) = 0 nemá žádné skutečné kořeny.?
Viz. níže. Kořeny pro bx ^ 2- (a-3b) x + b = 0 jsou x = (a - 3 b pmsqrt [a ^ 2 - 6 ab + 5 b ^ 2]) / (2 b) Kořeny budou shodné a reálný jestliže a ^ 2 - 6 ab + 5 b ^ 2 = (a - 5 b) (a - b) = 0 nebo a = b nebo a = 5b Nyní řešení x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 máme x = 1/2 (-a + b pm sqrt [a ^ 2 - 6 ab + 5 b ^ 2-4]) Podmínkou pro komplexní kořeny je ^ 2 - 6 ab + 5 b ^ 2-4 lt 0 nyní a = b nebo a = 5b máme a ^ 2 - 6 ab + 5 b ^ 2-4 = -4 <0 Závěr, pokud bx ^ 2- (a-3b) x + b = 0 má shodné skutečné kořeny, pak x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 bude
Která formulace nejlépe popisuje rovnici (x + 5) 2 + 4 (x + 5) + 12 = 0? Rovnice je kvadratická ve formě, protože to může být přepsáno jako kvadratická rovnice s u substitucí u = (x + 5). Rovnice je kvadratická ve tvaru, protože když je rozšířena,
Jak je vysvětleno níže, u-substituce ji bude popisovat jako kvadratickou u. Pro kvadratický v x, jeho expanze bude mít nejvyšší sílu x jak 2, nejlépe popisovat to jak kvadratický v x.
Použijte diskriminační k určení počtu a typu řešení, která má rovnice? x ^ 2 + 8x + 12 = 0 skutečné řešení B. skutečné řešení C. dvě racionální řešení D. dvě iracionální řešení
C. dvě racionální řešení Řešení kvadratické rovnice a * x ^ 2 + b * x + c = 0 je x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In uvažovaný problém, a = 1, b = 8 a c = 12 nahrazení, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 nebo x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 a x = (-8 - 4) / 2 x = (- 4) / 2 a x = (-12) / 2 x = - 2 a x = -6