Odpovědět:
Našel jsem:
Vysvětlení:
Můžeme to napsat jako:
Abychom byli rovni, argumenty budou stejné:
přeskupení:
řešení pomocí kvadratického vzorce:
dvě řešení:
Jak zjistíte doménu a rozsah kusové funkce y = x ^ 2, pokud x <0, y = x + 2, pokud 0 x 3, y = 4, pokud x> 3?
"Doména:" (-oo, oo) "Rozsah:" (0, oo) Nejlepším způsobem je začít graficky zpracovávat jednotlivé funkce tak, že si nejprve přečtete příkazy "pokud" a budete s největší pravděpodobností zkrátit šanci na chybu. tak. Jak již bylo řečeno, máme: y = x ^ 2 "pokud" x <0 y = x + 2 ", pokud" 0 <= x <= 3 y = 4 ", pokud" x> 3 je velmi důležité sledovat vaše "větší / méně než nebo rovna "znaménkům, protože dva body na stejné doméně to udělají tak, že graf není funk
Jak zkombinujete podobné termíny ve 3 log x + log _ {4} - log x - log 6?
Použitím pravidla, že součet logů je logem produktu (a opravou překlepu) získáme log frac {2x ^ 2} {3}. Předpokládá se, že student chtěl spojit termíny do 3 log x + log 4 - log x - log 6 = log x ^ 3 + log 4 - log x - log 6 = log {4x ^ 3} {6x} = log frac { 2x ^ 2} {3}
Na základě odhadu log (2) = .03 a log (5) = .7, jak použijete vlastnosti logaritmů k nalezení přibližných hodnot pro log (80)?
0,82 potřebujeme znát vlastnost loga loga * b = loga + logb log (80) = log (8 * 10) = log (8 * 5 * 2) = log (4 * 2 * 5 * 2) = log (2 * 2 * 2 * 5 * 2) log (2x2 * 2 * 5 * 2) = log2 + log2 + log2 + log5 + log2 = 4log2 + log5 4 * (0,03) + 0,7 = 0,12 + 0,7 = 0,82