Odpovědět:
Podívejte se na odpověď níže …
Vysvětlení:
# sqrt3 / (cos2A) -1 / (sin2A) = 4 #
# => sqrt3 cdot sin2A-cos2A = 4 cdot sin2A cdot cos2A #
# => sqrt3 / 2 cdot sin2A-1 / 2cos2A = 2 cdot sin2A cdot cos2A #
# => sin2A cdot cos30 ^ @ - cos2A cdot sin30 ^ @ = sin4A #
# => sin (2A-30 ^ @) = sin4A #
# => 2A-30 ^ @ = 4A #
# => 2A = -30 ^ @ #
# => A = -15 ^ @ # DOUFÁM, ŽE TO POMŮŽE…
DĚKUJI…
Ukažte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jsem trochu zmatený, když udělám Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný jako cos (180 ° -theta) = - costheta in druhý kvadrant. Jak mám doložit otázku?
Viz níže. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Co je to (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bereme, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 + sqrt3) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (zrušit (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - zrušit (2sqrt15) -5 + 2 * 3 + zrušit (sqrt15)) / (12-5) = ( -10 + 12) / 7 =
Řešit x²-3 <3. To vypadá jednoduše, ale nemohl jsem dostat správnou odpověď. Odpověď je (- 5, -1) U (1, 5). Jak řešit tuto nerovnost?
Řešením je, že nerovnost by měla být abs (x ^ 2-3) <barva (červená) (2) Jako obvykle s absolutními hodnotami se dělí na případy: Případ 1: x ^ 2 - 3 <0 Pokud x ^ 2 - 3 <0 pak abs (x ^ 2-3) = - (x ^ 2-3) = -x ^ 2 + 3 a naše (opravená) nerovnost se stává: -x ^ 2 + 3 <2 Přidat x ^ 2-2 obě strany se dostanou 1 <x ^ 2 So x v (-oo, -1) uu (1, oo) Ze stavu případu máme x ^ 2 <3, takže xv (-sqrt (3), sqrt (3)) Proto: xv (-sqrt (3), sqrt (3)) nn ((-oo, -1) uu (1, oo)) = (-sqrt (3), -1) uu (1 , sqrt (3)) Případ 2: x ^ 2 - 3> = 0 Pokud x ^ 2 - 3>