Odpovědět:
Vysvětlení:
#f (x) = 4x ^ 2 (x-2) -12x (x-2) +8 (x-2) + 0 #
#color (bílá) (f (x)) = (x-2) (4x ^ 2-12x + 8) #
#color (bílá) (f (x)) = 4 (x-2) (x ^ 2-3x + 2) #
#color (bílá) (f (x)) = 4 (x-2) (x-2) (x-1) #
#color (bílá) (f (x)) = 4 (x-2) ^ 2 (x-1) #
# rArr4 (x-2) ^ 2 (x-1) = 0 #
#rArr "kořeny jsou" #
# x = 2 "multiplicita 2 a" x = 1 "multiplicita 1" #
Graf funkce f (x) = (x + 2) (x + 6) je uveden níže. Jaké prohlášení o funkci je pravdivé? Funkce je kladná pro všechny reálné hodnoty x, kde x> –4. Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Nuly funkce f (x) jsou 3 a 4, zatímco nuly druhé funkce g (x) jsou 3 a 7. Jaké jsou nuly funkce y = f (x) / g (x )?
Pouze nula y = f (x) / g (x) je 4. Jako nuly funkce f (x) jsou 3 a 4, tento prostředek (x-3) a (x-4) jsou faktory f (x ). Dále nuly druhé funkce g (x) jsou 3 a 7, což znamená (x-3) a (x-7) faktory f (x). To znamená ve funkci y = f (x) / g (x), ačkoli (x-3) by měl zrušit jmenovatel g (x) = 0 není definován, když x = 3. Není také definován, když x = 7. Proto máme díru v x = 3. a pouze nula y = f (x) / g (x) je 4.
Q.1 Pokud alfa, beta jsou kořeny rovnice x ^ 2-2x + 3 = 0, získáte rovnici, jejíž kořeny jsou alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 a beta ^ 3-beta ^ 2 + beta + 5?
Q.1 Pokud alfa, beta jsou kořeny rovnice x ^ 2-2x + 3 = 0, získáte rovnici, jejíž kořeny jsou alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 a beta ^ 3-beta ^ 2 + beta + 5? Odpověď daná rovnice x ^ 2-2x + 3 = 0 => x = (2pmsqrt (2 ^ 2-4 * 1 * 3)) / 2 = 1pmsqrt2i Nechť alfa = 1 + sqrt2i a beta = 1-sqrt2i Teď nechť gamma = a ^ 3-3 a ^ 2 + 5 alfa -2 => gama = alfa ^ 3-3 + 2 + 3 alfa-1 + 2alfa-1 => gamma = (alfa-1) ^ 3 + alfa-1 + alpha => gamma = (sqrt2i) ^ 3 + sqrt2i + 1 + sqrt2i => gamma = -2sqrt2i + sqrt2i + 1 + sqrt2i = 1 A nechť delta = beta ^ 3-beta ^ 2 + beta + 5 => delta = beta ^ 2 (beta-1) + beta