Odpovědět:
# y = x ^ 2/4 + (3x) / 2 + 9/4 #
Vysvětlení:
Vzhledem k
Soustředit se
Directrix
Z daných informací chápeme, že se parabola otevírá.
Vrchol leží mezi Focusem a directrixem uprostřed.
Vrchol je
Pak je vrcholová rovnice rovnice
# (x-h) ^ 2 = 4xxaxx (y-k) #
Kde -
# h = -3 #
# k = 0 #
# a = 1 # Vzdálenost mezi ohniskem a vrcholem nebo přímkou a vrcholem.
# (x - (- 3)) ^ 2 = 4 xx 1 xx (y-0) #
# (x + 3) ^ 2 = 4y #
# 4y = x ^ 2 + 6x + 9 #
# y = x ^ 2/4 + (3x) / 2 + 9/4 #
Jaká je vrcholová forma rovnice paraboly se zaměřením na (0, -15) a přímkou y = -16?
Vrcholová forma paraboly je y = a (x-h) + k, ale s tím, co je dáno, je snazší začít tím, že se podíváme na standardní formu (x-h) ^ 2 = 4c (y-k). Vrchol parabola je (h, k), directrix je definován rovnicí y = k-c, a fokus je (h, k + c). a = 1 / (4c). Pro tuto parabolu je fokus (h, k + c) (0, "-" 15), takže h = 0 a k + c = "-" 15. Directrix y = k-c je y = "-" 16 tak k-c = "-" 16. Nyní máme dvě rovnice a můžeme najít hodnoty k a c: {(k + c = "-" 15), (kc = "-" 16):} Řešení tohoto systému
Jaká je vrcholová forma rovnice paraboly se zaměřením na (11,28) a přímkou y = 21?
Rovnice paraboly ve formě vrcholu je y = 1/14 (x-11) ^ 2 + 24.5 Vrchol je ekvuidistantní od fokusu (11,28) a directrix (y = 21). Tak vrchol je u 11, (21 + 7/2) = (11,24.5) Rovnice parabola ve formě vrcholu je y = a (x-11) ^ 2 + 24.5. Vzdálenost vrcholu od directrix je d = 24,5-21 = 3,5 Víme, d = 1 / (4 | a |) nebo a = 1 / (4 * 3,5) = 1 / 14.Sa Parabola se otevírá, 'a' je + ive. Proto rovnice parabola ve formě vrcholu je y = 1/14 (x-11) ^ 2 + 24.5 graf {1/14 (x-11) ^ 2 + 24.5 [-160, 160, -80, 80]} [ Ans]
Jaká je vrcholová forma rovnice paraboly se zaměřením na (1,20) a přímkou y = 23?
Y = x ^ 2 / -6 + x / 3 + 64/3 Dáno - Focus (1,20) directrix y = 23 Vrchol paraboly je v prvním kvadrantu. Jeho přímka je nad vrcholem. Proto se parabola otevírá směrem dolů. Obecná forma rovnice je - (xh) ^ 2 = - 4xxaxx (yk) Kde - h = 1 [X-souřadnice vrcholu] k = 21,5 [Y-souřadnice vrcholu] Pak - (x-1 ) ^ 2 = -4xx1.5xx (y-21,5) x ^ 2-2x + 1 = -6y + 129 -6y + 129 = x ^ 2-2x + 1 -6y = x ^ 2-2x + 1-129 y = x ^ 2 / -6 + x / 3 + 128/6 y = x ^ 2 / -6 + x / 3 + 64/3