Ukažte, že 3 ^ (1/3) xx9 ^ (1/9) xx27 ^ (1/27) ... do nekonečna = 3 ^ (3/4) .how?

Ukažte, že 3 ^ (1/3) xx9 ^ (1/9) xx27 ^ (1/27) ... do nekonečna = 3 ^ (3/4) .how?
Anonim

Odpovědět:

Viz. níže.

Vysvětlení:

# 3 ^ (1/3) xx9 ^ (1/9) xx27 ^ (1/27) cdots = 3 ^ (1/3) xx 3 ^ (2/9) xx 3 ^ (3/27) cdots = 3 ^ (1/3 + 2/9 + 3/27 + cdots + n / 3 ^ n + cdots) = 3 ^ S #

s

#S = sum_ (k = 1) ^ oo n / 3 ^ n =? #

Víme, že #sum_ (k = 1) ^ oo k x ^ k = x d / (dx) součet (k = 1) ^ oo x ^ k #

a také to #abs x <1 #

#sum_ (k = 1) ^ oo x ^ k = 1 / (1-x) -1 # a # d / (dx) (1 / (1-x) -1) = 1 / (1-x) ^ 2 # pak

#sum_ (k = 1) ^ oo k x ^ k = x / (1-x) ^ 2 # a pro #x = 1/3 # my máme

#S = 3/4 # pak konečně

# 3 ^ S = 3 ^ (3/4) #