Odpovědět:
Rovnice paraboly je
Vysvětlení:
Directrix je zde vodorovná čára
Protože tato čára je kolmá na osu symetrie, jedná se o pravidelnou parabolu, kde se nachází
Nyní vzdálenost bodu na parabola od zaměření na
Jeho vzdálenost od zaostření je
Proto,
nebo
nebo
nebo
Jaká je vrcholová forma rovnice paraboly se zaměřením na (0, -15) a přímkou y = -16?
Vrcholová forma paraboly je y = a (x-h) + k, ale s tím, co je dáno, je snazší začít tím, že se podíváme na standardní formu (x-h) ^ 2 = 4c (y-k). Vrchol parabola je (h, k), directrix je definován rovnicí y = k-c, a fokus je (h, k + c). a = 1 / (4c). Pro tuto parabolu je fokus (h, k + c) (0, "-" 15), takže h = 0 a k + c = "-" 15. Directrix y = k-c je y = "-" 16 tak k-c = "-" 16. Nyní máme dvě rovnice a můžeme najít hodnoty k a c: {(k + c = "-" 15), (kc = "-" 16):} Řešení tohoto systému
Jaká je vrcholová forma rovnice paraboly se zaměřením na (11,28) a přímkou y = 21?
Rovnice paraboly ve formě vrcholu je y = 1/14 (x-11) ^ 2 + 24.5 Vrchol je ekvuidistantní od fokusu (11,28) a directrix (y = 21). Tak vrchol je u 11, (21 + 7/2) = (11,24.5) Rovnice parabola ve formě vrcholu je y = a (x-11) ^ 2 + 24.5. Vzdálenost vrcholu od directrix je d = 24,5-21 = 3,5 Víme, d = 1 / (4 | a |) nebo a = 1 / (4 * 3,5) = 1 / 14.Sa Parabola se otevírá, 'a' je + ive. Proto rovnice parabola ve formě vrcholu je y = 1/14 (x-11) ^ 2 + 24.5 graf {1/14 (x-11) ^ 2 + 24.5 [-160, 160, -80, 80]} [ Ans]
Jaká je vrcholová forma rovnice paraboly se zaměřením na (1,20) a přímkou y = 23?
Y = x ^ 2 / -6 + x / 3 + 64/3 Dáno - Focus (1,20) directrix y = 23 Vrchol paraboly je v prvním kvadrantu. Jeho přímka je nad vrcholem. Proto se parabola otevírá směrem dolů. Obecná forma rovnice je - (xh) ^ 2 = - 4xxaxx (yk) Kde - h = 1 [X-souřadnice vrcholu] k = 21,5 [Y-souřadnice vrcholu] Pak - (x-1 ) ^ 2 = -4xx1.5xx (y-21,5) x ^ 2-2x + 1 = -6y + 129 -6y + 129 = x ^ 2-2x + 1 -6y = x ^ 2-2x + 1-129 y = x ^ 2 / -6 + x / 3 + 128/6 y = x ^ 2 / -6 + x / 3 + 64/3