Odpovědět:
Vysvětlení:
Standardní forma kvadratické rovnice je
a pro tuto standardní formu je kvadratický vzorec
lze převést na standardní formulář jako
Jaký je zlepšený kvadratický vzorec při řešení kvadratických rovnic?
Vylepšený kvadratický vzorec (Google, Yahoo, Bing Search) Vylepšené kvadratické vzorce; D = d ^ 2 = b ^ 2-4ac (1) x = -b / (2a) + - d / (2a) (2). V tomto vzorci: - Množství -b / (2a) představuje souřadnici x osy symetrie. - Množství + - d / (2a) představuje vzdálenosti od osy symetrie k 2 x-průsečíkům. Výhody; - Jednodušší a snadněji zapamatovatelné než klasický vzorec. - Snadnější pro výpočetní techniku, a to is kalkulačkou. - Studenti více porozumí funkcím kvadratických funkcí, jako jsou: vertex, osa symetrie, x-zachycen
Jaký je zlepšený kvadratický vzorec pro řešení kvadratických rovnic?
Existuje pouze jeden kvadratický vzorec, tj. X = (- b + -sqrt (b ^ 2-4ac)) / (2a). Pro obecné řešení x v ax ^ 2 + bx + c = 0 můžeme odvodit kvadratický vzorec x = (- b + -sqrt (b ^ 2-4ac)) / (2a). ax ^ 2 + bx + c = 0 ax ^ 2 + bx = -c 4a ^ 2x ^ 2 + 4abx = -4ac 4a ^ 2x ^ 2 + 4abx + b ^ 2 = b ^ 2-4ac Nyní můžete faktorizovat. (2ax + b) ^ 2 = b ^ 2-4ac 2ax + b = + - sqrt (b ^ 2-4ac) 2ax = -b + -sqrt (b ^ 2-4ac): .x = (- b + -sqrt ( b ^ 2-4ac)) / (2a)
Která formulace nejlépe popisuje rovnici (x + 5) 2 + 4 (x + 5) + 12 = 0? Rovnice je kvadratická ve formě, protože to může být přepsáno jako kvadratická rovnice s u substitucí u = (x + 5). Rovnice je kvadratická ve tvaru, protože když je rozšířena,
Jak je vysvětleno níže, u-substituce ji bude popisovat jako kvadratickou u. Pro kvadratický v x, jeho expanze bude mít nejvyšší sílu x jak 2, nejlépe popisovat to jak kvadratický v x.