Šířka fotbalového hřiště musí být mezi 55 yd a 80 yd. Jaká složená nerovnost představuje šířku fotbalového hřiště? Jaké jsou možné hodnoty pro šířku pole, pokud je šířka násobkem 5?
Složená nerovnost, která představuje šířku (W) fotbalového hřiště s podmínkami, je následující: 55yd <W <80yd Možné hodnoty (násobek 5yd) jsou: 60, 65, 70, 75 Nerovnost znamená, že hodnota W je variabilní a může ležet mezi 55yd a 80yd, definicí možného rozsahu pro W. Dva znaky <jsou orientovány na stejný směr, označující uzavřený rozsah pro W. 'Mezi' znamená, že koncové hodnoty NEJSOU zahrnuty, 'Od' znamená, že jsou zahrnuty koncové hodnoty. Složená nerovnost v tomto případě
Trojúhelník XYZ je rovnoramenný. Základní úhly, úhel X a úhel Y, jsou čtyřnásobkem míry úhlu vrcholu, úhel Z. Jaká je míra úhlu X?
Nastavte dvě rovnice se dvěma neznámými. Najdete X a Y = 30 stupňů, Z = 120 stupňů Víte, že X = Y, to znamená, že můžete Y nahradit X nebo naopak. Můžete vypracovat dvě rovnice: Jelikož v trojúhelníku je 180 stupňů, znamená to: 1: X + Y + Z = 180 Náhradník Y X: 1: X + X + Z = 180 1: 2X + Z = 180 může také udělat další rovnici založenou na tom, že úhel Z je 4 krát větší než úhel X: 2: Z = 4X Nyní, pojďme dát rovnici 2 do rovnice 1 nahrazením Z 4x: 2X + 4X = 180 6X = 180 X = 30 Vložit tato hodnota X buď do první nebo druhé rov
V trojúhelníku RPQ, RP = 8,7 cm PQ = 5,2 cm Úhel PRQ = 32 ° (a) Za předpokladu, že úhel PQR je ostrý úhel, vypočítejte plochu trojúhelníku RPQ? Odpovězte správně na 3 významné číslice
22,6 cm ^ 2 (3 "s.f.") Nejprve musíte najít úhel RPQ pomocí sinusového pravidla. 8.7 / 5.2 = (sin úhel RQP) / sin32 sin úhel RQP = 87 / 52sin32 úhel RQP = 62,45 proto úhel RPQ = 180 - 62,45 - 32 = 85,55 Nyní můžete použít vzorec, Plocha = 1 / 2ab sinC = 1 / 2 x 8,7 * 5,2 * sin85,55 = 22,6 cm2 (3 "sf") PS Děkuji @ zain-r za ukázání mé chyby ven