Krok 1: Určete souřadnice koncového bodu K
Krok 2: K určení délky použijte Pythagoreanův teorém
Krok 1
Pokud je M středem JK, pak změny v
Souřadnice K jsou
Krok 2:
založený na Pythagorean teorému
Střed segmentu je (-8, 5). Pokud je jeden koncový bod (0, 1), jaký je druhý koncový bod?
(-16, 9) Volejte AB segment s A (x, y) a B (x1 = 0, y1 = 1) Volejte M střed -> M (x2 = -8, y2 = 5) Máme 2 rovnice : x2 = (x + x1) / 2 -> x = 2x2 - x1 = 2 (-8) - 0 = - 16 y2 = (y + y1) / 2 -> y = 2y2 - y1 = 2 (5 ) - 1 = 9 Druhý koncový bod je A (-16, 9) .A --------------------------- M --- ------------------------ B (x, y) (-8, 5) (0, 1)
Na souřadnicové mřížce AB má koncový bod B na (24,16), střed AB je P (4, -3), což je souřadnice Y bodu A?
Vezměme si souřadnice x a y odděleně x a y středního bodu jsou průměrem hodnot koncových bodů. Pokud P je střed, pak: x_P = (x_A + x_B) / 2-> 4 = (x_A + 24) / 2-> x_A = -16 y_P = (y_A + y_B) / 2 -> - 3 = (y_A + 16) / 2-> y_A = -22
Body (–9, 2) a (–5, 6) jsou koncové body průměru kruhu Jaká je délka průměru? Jaký je střed C kruhu? Vzhledem k bodu C, který jste našli v části (b), uveďte bod symetrický k C o ose x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 střed, C = (-7, 4) symetrický bod kolem osy x: (-7, -4) Daný: koncové body průměru kruhu: (- 9, 2), (-5, 6) Použijte vzorec vzdálenosti k nalezení délky průměru: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 najít střed: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Použijte pravidlo souřadnic pro odraz kolem osy x (x, y) -> (x, -y): (-7, 4) symetrický bod kolem osy x: -7, -4)