Co je x, pokud log_4 x = 1/2 + log_4 (x-1)?

Co je x, pokud log_4 x = 1/2 + log_4 (x-1)?
Anonim

Odpovědět:

# x = 2 #

Vysvětlení:

Tak jako # log_4 x = 1/2 + log_4 (x-1) #

# log_4x-log_4 (x-1) = 1/2 #

nebo # log_4 (x / (x-1)) = 1/2 #

tj. # x / (x-1) = 4 ^ (1/2) = 2 #

a # x = 2x-2 #

tj. # x = 2 #

Odpovědět:

# x = 2 #.

Vysvětlení:

# log_4x = 1/2 + log_4 (x-1) #.

#:. log_4 x-log_x (x-1) = 1/2 #.

#:. log_4 {x / (x-1)} = 1/2 … protože, log_bm-log_bn = log_b (m / n) #.

#:. {x / (x-1)} = 4 ^ (1/2) = 2, … protože, "definice" logu "#.

#:. x = 2 (x-1) = 2x-2 #.

#:. -x = -2, nebo, x = 2 #.

Tento kořen uspokojit daný eqn.

#:. x = 2 #.