Dva kruhy mající stejný poloměr r_1 a dotýkající se čáry lon na stejné straně l jsou ve vzdálenosti x od sebe navzájem. Třetí kruh o poloměru r_2 se dotýká obou kruhů. Jak zjistíme výšku třetího kruhu od l?
Viz. níže. Předpokládejme, že x je vzdálenost mezi obvody a předpokládáme, že 2 (r_1 + r_2) gt x + 2r_1 máme h = sqrt ((r_1 + r_2) ^ 2- (r_1 + x / 2) ^ 2) + r_1-r_2 h je vzdálenost mezi l a obvodem C_2
Nechat klobouk (ABC) být nějaký trojúhelník, úsek bar (AC) k D takový že bar (CD)? Bar (CB); natáhnout také bar (CB) do E tak, že bar (CE) bar (CA). Segmenty bar (DE) a bar (AB) se setkávají na F. Show the hat (DFB je rovnoramenné?
Jak je uvedeno níže: Daný obrázek "V" DeltaCBD, bar (CD) ~ = bar (CB) => / _ CBD = / _ CDB "Opět v" DeltaABC a DeltaDEC bar (CE) ~ = bar (AC) -> "podle konstrukce "bar (CD) ~ = bar (CB) ->" podle konstrukce "" A "/ _DCE =" vertikálně naproti "/ _BCA" Proto "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Nyní v "DeltaBDF, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB "So" bar (FB) ~ = bar (FD) => DeltaFBD "isosceles"
Prokažte následující prohlášení. Ať je ABC jakýkoliv pravoúhlý trojúhelník, pravý úhel v bodě C. Nadmořská výška nakreslená od C do hypotézy rozděluje trojúhelník na dva pravé trojúhelníky, které jsou si navzájem podobné a původní trojúhelník?
Viz. níže. Podle otázky je DeltaABC pravý trojúhelník s / _C = 90 ^ @ a CD je nadmořská výška pro hypotézu AB. Důkaz: Předpokládejme, že / _ABC = x ^ @. So, úhelBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Nyní, CD kolmá AB. Takže úhelBDC = úhelADC = 90 ^ @. V DeltaCBD, úhelBCD = 180 ^ @ - úhelBDC - úhelCBD = 180 ^ @ - 90 ^ - x ^ @ = (90 -x) ^ @ Podobně úhelACD = x ^ @. Nyní, v DeltaBCD a DeltaACD, úhel CBD = úhel ACD a úhel BDC = úhelADC. Takže podle AA kritérií podobnosti, DeltaBCD ~ DeltaACD. Podobně můžem