Kruh A má poloměr 2 a střed (6, 5). Kruh B má poloměr 3 a střed (2, 4). Pokud je kruh B přeložen <1, 1>, překrývá kruh A? Pokud ne, jaká je minimální vzdálenost mezi body na obou kruzích?
"kruhy se překrývají"> "zde musíme porovnat vzdálenost (d)" "mezi středy a součtem poloměrů" • ", pokud součet poloměrů"> d ", pak se kruhy překrývají" • ", jestliže součet poloměry "<d" pak žádné překrývání "" před výpočtem d požadujeme najít nové centrum "" B po daném překladu "" pod překladem "<1,1> (2,4) až (2 + 1, 4 + 1) až (3,5) larrcolor (červená) "nové centrum B" "pro výpočet d použijte" barevn
Kruh A má střed (5, -2) a poloměr 2. Kruh B má střed (2, -1) a poloměr 3. Překrývají se kruhy? Pokud ne, jaká je nejmenší vzdálenost mezi nimi?
Ano, kruhy se překrývají. spočítat středovou k střední disance Nechť P_2 (x_2, y_2) = (5, -2) a P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3.16 Vypočítat součet poloměrů r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d se kruhy překrývají Bůh žehnej .... Doufám, že vysvětlení je užitečné.
Vezměme si 3 stejné kruhy o poloměru r v daném kruhu o poloměru R, které se dotýkají ostatních dvou a daného kruhu, jak je znázorněno na obrázku, pak se oblast stínované oblasti rovná?
Můžeme vytvořit výraz pro oblast stínované oblasti jako je: A_ "shaded" = piR ^ 2 - 3 (pir ^ 2) -A_ "center" kde A_ "center" je oblast malé části mezi třemi menší kruhy. Pro nalezení této oblasti můžeme nakreslit trojúhelník spojením středů tří menších bílých kruhů. Protože každý kruh má poloměr r, délka každé strany trojúhelníku je 2r a trojúhelník je rovnostranný, takže mají úhly 60 ^ o. Můžeme tedy říci, že úhel centrální oblasti je oblast