Odpovědět:
Vysvětlení:
Kvadratický vzorec je:
Koeficient pro
Řešení:
Vzorec pro nalezení plochy čtverce je A = s ^ 2. Jak transformujete tento vzorec tak, aby našel vzorec pro délku strany čtverce s plochou A?
S = sqrtA Použijte stejný vzorec a změňte předmět tak, aby byl s. Jinými slovy izolujte s. Obvykle je postup následující: Začněte tím, že znáte délku strany. "strana" rarr "čtvercová strana" rarr "Oblast" Udělejte pravý opak: přečtěte si zprava doleva "strana" larr "najděte druhou odmocninu" larr "Oblast" V matematice: s ^ 2 = A s = sqrtA
Jaký je zlepšený kvadratický vzorec při řešení kvadratických rovnic?
Vylepšený kvadratický vzorec (Google, Yahoo, Bing Search) Vylepšené kvadratické vzorce; D = d ^ 2 = b ^ 2-4ac (1) x = -b / (2a) + - d / (2a) (2). V tomto vzorci: - Množství -b / (2a) představuje souřadnici x osy symetrie. - Množství + - d / (2a) představuje vzdálenosti od osy symetrie k 2 x-průsečíkům. Výhody; - Jednodušší a snadněji zapamatovatelné než klasický vzorec. - Snadnější pro výpočetní techniku, a to is kalkulačkou. - Studenti více porozumí funkcím kvadratických funkcí, jako jsou: vertex, osa symetrie, x-zachycen
Jaký je zlepšený kvadratický vzorec pro řešení kvadratických rovnic?
Existuje pouze jeden kvadratický vzorec, tj. X = (- b + -sqrt (b ^ 2-4ac)) / (2a). Pro obecné řešení x v ax ^ 2 + bx + c = 0 můžeme odvodit kvadratický vzorec x = (- b + -sqrt (b ^ 2-4ac)) / (2a). ax ^ 2 + bx + c = 0 ax ^ 2 + bx = -c 4a ^ 2x ^ 2 + 4abx = -4ac 4a ^ 2x ^ 2 + 4abx + b ^ 2 = b ^ 2-4ac Nyní můžete faktorizovat. (2ax + b) ^ 2 = b ^ 2-4ac 2ax + b = + - sqrt (b ^ 2-4ac) 2ax = -b + -sqrt (b ^ 2-4ac): .x = (- b + -sqrt ( b ^ 2-4ac)) / (2a)