Odpovědět:
Zjistěte, že tři celá čísla jsou:
Vysvětlení:
Předpokládejme, že střední po sobě jdoucí celé číslo je
Pak chceme:
# 20 <(n-1) + n + (n + 1) = 3n #
Rozdělení obou konců o
#n> 20/3 = 6 2/3 #
Takže nejmenší celočíselná hodnota
Tři po sobě jdoucí celá čísla mohou být reprezentována n, n + 1 a n + 2. Pokud je součet tří po sobě jdoucích celých čísel 57, jaká jsou celá čísla?
18,19,20 Součet je přidání čísla, takže součet n, n + 1 a n + 2 může být vyjádřen jako n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 tak naše první číslo je 18 (n) naše druhá je 19, (18 + 1) a naše třetí je 20, (18 + 2).
Jaké jsou tři po sobě jdoucí celá čísla, jejichž součet je 9 větší než dvojnásobek největšího čísla?
10,11,12 Nechť tři po sobě jdoucí celá čísla jsou x, x + 1, x + 2, resp. Takže největší celé číslo = x + 2 => x + (x + 1) + (x + 2) = 9 + 2 (x + 2) 3x + 3 = 9 + 2x + 4 3x-2x = 9 + 4-3 x = 10 => x + 1 = 11 => x + 2 = 12
"Lena má 2 po sobě jdoucí celá čísla."Všimne si, že jejich součet se rovná rozdílu mezi jejich čtverci. Lena vybírá další 2 po sobě jdoucí celá čísla a všimne si totéž. Prokázat algebraicky, že to platí pro všechny 2 po sobě jdoucí celá čísla?
Laskavě se podívejte na Vysvětlení. Připomeňme, že po sobě jdoucí celá čísla se liší o 1. Proto, pokud m je jedno celé číslo, pak musí být následující celé číslo n + 1. Součet těchto dvou celých čísel je n + (n + 1) = 2n + 1. Rozdíl mezi jejich čtverci je (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, podle potřeby! Cítit radost z matematiky!