Odpovědět:
y = -19 / 15x - 2
Vysvětlení:
K určení lineární funkce pro tento problém je třeba použít rovnici svahu.
Sklon-lineární rovnice je:
Kde
Nahrazení uvedených informací:
První a druhý termín geometrické posloupnosti jsou vždy první a třetí termíny lineární posloupnosti. Čtvrtý termín lineární posloupnosti je 10 a součet jeho prvních pěti výrazů je 60 Najít prvních pět termínů lineární sekvence?
{16, 14, 12, 10, 8} Typická geometrická posloupnost může být reprezentována jako c0a, c_0a ^ 2, cdoty, c_0a ^ k a typická aritmetická sekvence jako c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volání c_0 a jako prvního prvku pro geometrickou posloupnost máme {(c_0 a ^ 2 = c_0a + 2Delta -> "První a druhá z GS jsou první a třetí z LS"), (c_0a + 3Delta = 10- > "Čtvrtý termín lineární posloupnosti je 10"), (5c_0a + 10Delta = 60 -> "Součet jeho prvních pěti výrazů je 60"):} Řešen&
Graf funkce f (x) = (x + 2) (x + 6) je uveden níže. Jaké prohlášení o funkci je pravdivé? Funkce je kladná pro všechny reálné hodnoty x, kde x> –4. Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Nechť f (x) = x-1. 1) Ověřte, že f (x) není ani sudé ani liché. 2) Lze f (x) zapsat jako součet sudé funkce a liché funkce? a) Pokud ano, vystavte řešení. Existuje více řešení? b) Pokud ne, ukažte, že to není možné.
Nechť f (x) = | x -1 |. Kdyby f byly sudé, pak f (-x) by se rovnalo f (x) pro všechny x. Jestliže f bylo liché, pak f (-x) by se rovnalo -f (x) pro všechny x. Všimněte si, že pro x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Protože 0 není rovno 2 nebo -2, f není ani sudé ani liché. Může být f napsáno jako g (x) + h (x), kde g je sudé a h je liché? Pokud tomu tak bylo, pak g (x) + h (x) = | x - 1 |. Volejte toto prohlášení 1. Nahraďte x za -x. g (-x) + h (-x) = | -x - 1 | Protože g je sudý a h je lichý, máme: g (x) - h (x) = | -x - 1 | Vyvolejte toto