Objem (v) koule se mění přímo jako kostka jejího průměru (d). Jak píšete toto prohlášení v algebraickém jazyce pomocí rovnice s proměnnými c, v a d.?
Viz vysvětlení níže Víme, že objem koule je dán V = 4 / 3pir ^ 3 Toto vyjádření může být přeloženo tímto způsobem V = cr ^ 3 kde c je faktor proporcionality, který je konstantní. Uvidíte (ve srovnání s prvním vzorcem), že c = 4 / 3pi Doufám, že to pomůže
Kevin má 5 kostek. Každá kostka má jinou barvu. Kevin uspořádá kostky vedle sebe v řadě. Jaký je celkový počet různých uspořádání 5 kostek, které může Kevin udělat?
K dispozici je 120 různých uspořádání pěti barevných kostek. První pozice je jedna z pěti možností; druhá pozice je tedy jednou ze čtyř zbývajících možností; třetí pozice je jednou ze tří zbývajících možností; čtvrtá pozice bude jedna ze zbývajících dvou možností; a pátá pozice bude vyplněna zbývající kostkou. Celkový počet různých opatření je tedy dán: 5 * 4 * 3 * 2 * 1 = 120 Existuje 120 různých uspořádání pěti barevných kostek.
'L se mění společně jako a druhá odmocnina b, a L = 72 když a = 8 a b = 9. Najít L když a = 1/2 a b = 36? Y se mění společně jako kostka x a druhá odmocnina w, a Y = 128, když x = 2 a w = 16. Najděte Y, když x = 1/2 a w = 64?
L = 9 "a" y = 4> "počáteční příkaz je" Lpropasqrtb "k převodu na rovnici násobenou k konstantou" "variace" rArrL = kasqrtb "k nalezení k použijte dané podmínky" L = 72 ", když "a = 8" a "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" rovnice je "barva (červená) (bar (ul (| barva (bílá) ( 2/2) barva (černá) (L = 3asqrtb) barva (bílá) (2/2) |)) "když" a = 1/2 "a" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 barva (modrá) "