Odpovědět:
Období je
Vysvětlení:
Období
Tady,
Proto,
Tak jako,
Odpovědět:
Vysvětlení:
Období
Období
Období f (t) -> nejméně společný násobek
Období f (t) ->
Ukažte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jsem trochu zmatený, když udělám Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný jako cos (180 ° -theta) = - costheta in druhý kvadrant. Jak mám doložit otázku?
Viz níže. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Jaké je období a základní období y (x) = sin (2x) + cos (4x)?
Y (x) je součet dvou trignometrických funkcí. Období sin 2x by bylo (2pi) / 2, což je pi nebo 180 stupňů. Období cos4x by bylo (2pi) / 4, což je pi / 2, nebo 90 stupňů. Najít LCM 180 a 90. To by bylo 180. Proto by doba dané funkce byla pi
Jaké je období f (t) = sin (t / 2) + cos ((13t) / 24)?
52pi Období sin kt a cos kt je (2pi) / k. Období dvou výrazů ve f (t) jsou tedy 4pi a (48/13) pi. Pro součet, složené období je dáno L (4pi) = M ((48/13) pi), dělat společnou hodnotu jako nejméně celé číslo násobek pi. L = 13 a M = 1. Společná hodnota = 52pi; Kontrola: f (t + 52pi) = sin ((1/2) (t + 52pi)) + cos ((24/13) (t + 52pi)) = sin (26pi + t / 2) + cos (96pi + ( 24/13) t) = sin (t / 2) + cos (24 / 13t) = f (t) ..