Odpovědět:
Podrobnosti naleznete níže
Vysvětlení:
Frakce je kladná nebo nulová, pouze pokud má čitatel a jmenovatel stejné znaménko
Případ 1.- Obě pozitiva
Průsečík obou sad hodnot je
Případ 2.- Obě negativní
Podobná řešení jsou
Konečným výsledkem bude nyní spojení obou případů
Odpovědět:
Řešení je
Vysvětlení:
Nerovnost je
Nechat
Pojďme sestavit tabulku znamení
Proto,
graf {(x + 5) / (3-x ^ 2) -12,66, 12,66, -6,33, 6,33}
Diskriminační kvadratická rovnice je -5. Která odpověď popisuje počet a typ řešení rovnice: 1 komplexní řešení 2 reálná řešení 2 komplexní řešení 1 skutečné řešení?
Vaše kvadratická rovnice má 2 komplexní řešení. Diskriminační kvadratická rovnice nám může poskytnout pouze informaci o rovnici tvaru: y = ax ^ 2 + bx + c nebo parabola. Protože nejvyšší stupeň tohoto polynomu je 2, nesmí mít více než 2 řešení. Diskriminační je prostě látka pod symbolem druhé odmocniny (+ -sqrt ("")), ale nikoli samotný symbol druhé odmocniny. + -sqrt (b ^ 2-4ac) Pokud je diskriminační, b ^ 2-4ac, menší než nula (tj. jakékoliv záporné číslo), pak byste měli záporný symbol p
Použijte diskriminační k určení počtu a typu řešení, která má rovnice? x ^ 2 + 8x + 12 = 0 skutečné řešení B. skutečné řešení C. dvě racionální řešení D. dvě iracionální řešení
C. dvě racionální řešení Řešení kvadratické rovnice a * x ^ 2 + b * x + c = 0 je x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In uvažovaný problém, a = 1, b = 8 a c = 12 nahrazení, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 nebo x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 a x = (-8 - 4) / 2 x = (- 4) / 2 a x = (-12) / 2 x = - 2 a x = -6
Řešení systémů kvadratických nerovností. Jak řešit systém kvadratických nerovností pomocí dvojité číslice?
Můžeme použít dvojitou číselnou linii k řešení jakéhokoliv systému 2 nebo 3 kvadratických nerovností v jedné proměnné (autor Nghi H Nguyen) Řešení systému dvou kvadratických nerovností v jedné proměnné pomocí dvojité číselné řádky. Příklad 1. Vyřešte systém: f (x) = x ^ 2 + 2x - 3 <0 (1) g (x) = x ^ 2 - 4x - 5 <0 (2) První řešení f (x) = 0 - -> 2 skutečné kořeny: 1 a -3 mezi 2 skutečnými kořeny, f (x) <0 Řešit g (x) = 0 -> 2 skutečné kořeny: -1 a 5 Mezi dvěma skutečnými