Odpovědět:
Derivace nuly je nulová. To dává smysl, protože je to konstantní funkce.
Vysvětlení:
Definice limitu derivace:
Nula je funkce x takový to
Tak
Odpovědět:
Odpověď je 0.
Vysvětlení:
Zobrazí se graf h (x). Graf se jeví jako souvislý, kde se mění definice. Ukážte, že h je ve skutečnosti nepřetržité, když zjistíte levou a pravou hranici a ukazuje, že definice kontinuity je splněna?
Laskavě se podívejte na Vysvětlení. Abychom ukázali, že h je spojitá, musíme zkontrolovat její spojitost v x = 3. Víme, že h bude kont. v x = 3, jestliže a jediný jestliže, lim_ (x k 3-) h (x) = h (3) = lim_ (x k 3 +) h (x) ............ ................... (ast). Jako x k 3-, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x až 3-) h (x) = lim_ (x až 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x až 3-) h (x) = 4 ............................................ .......... (ast ^ 1). Podobně lim_ (x až 3+) h (x) = lim_ (x až 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_ (x až 3+) h
Jak zjistíte derivaci f (x) = 3x ^ 5 + 4x pomocí definice limitu?
F '(x) = 15x ^ 4 + 4 Základní pravidlo je, že x ^ n se stane nx ^ (n-1) So 5 * 3x ^ (5-1) + 1 * 4x ^ (1-1) Co je f '(x) = 15x ^ 4 + 4
Jak zjistíte derivaci g (x) = 2 / (x + 1) pomocí definice limitu?
= 2 / (x + 1) ^ 2f '(x) = lim_ (hrarr0) (f (x + h) -f (x)) / h = lim_ (hrarr0) (-2 / (x + h + 1) ) + 2 / (x + 1)) / h = lim_ (hrarr0) ((- 2 (x + 1)) / ((x + h + 1) (x + 1)) + (2 (x + h + 1)) / ((x + h + 1) (x + 1)) / h = lim_ (hrarr0) ((2h) / ((x + h + 1) (x + 1)) / h = lim_ (hrarr0) 2 / ((x + h + 1) (x + 1)) = 2 / (x + 1) ^ 2