Střed segmentu je (-8, 5). Pokud je jeden koncový bod (0, 1), jaký je druhý koncový bod?
(-16, 9) Volejte AB segment s A (x, y) a B (x1 = 0, y1 = 1) Volejte M střed -> M (x2 = -8, y2 = 5) Máme 2 rovnice : x2 = (x + x1) / 2 -> x = 2x2 - x1 = 2 (-8) - 0 = - 16 y2 = (y + y1) / 2 -> y = 2y2 - y1 = 2 (5 ) - 1 = 9 Druhý koncový bod je A (-16, 9) .A --------------------------- M --- ------------------------ B (x, y) (-8, 5) (0, 1)
Segment čáry má koncové body v (a, b) a (c, d). Segment čáry je rozšířen faktorem r kolem (p, q). Jaké jsou nové koncové body a délka segmentu linky?
(a, b) až ((1-r) p + ra, (1-r) q + rb), (c, d) až ((1-r) p + rc, (1-r) q + rd), nová délka l = r sq {(ac) ^ 2 + (bd) ^ 2}. Mám teorii, že všechny tyto otázky jsou zde, takže je tu něco pro nováčky. Udělám tu obecný případ a uvidím, co se stane. Rovinu překládáme tak, aby bod dilatace P mapoval počátek. Pak dilatace zmenšuje souřadnice o faktor r. Pak překládáme rovinu zpět: A '= r (A - P) + P = (1-r) P + r A To je parametrická rovnice pro přímku mezi P a A, s r = 0 dávající P, r = 1 dávat A, a r = r dávat A ', o
Body (–9, 2) a (–5, 6) jsou koncové body průměru kruhu Jaká je délka průměru? Jaký je střed C kruhu? Vzhledem k bodu C, který jste našli v části (b), uveďte bod symetrický k C o ose x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 střed, C = (-7, 4) symetrický bod kolem osy x: (-7, -4) Daný: koncové body průměru kruhu: (- 9, 2), (-5, 6) Použijte vzorec vzdálenosti k nalezení délky průměru: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 najít střed: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Použijte pravidlo souřadnic pro odraz kolem osy x (x, y) -> (x, -y): (-7, 4) symetrický bod kolem osy x: -7, -4)