Dva rohy trojúhelníku mají úhly (pi) / 3 a (pi) / 6. Pokud má jedna strana trojúhelníku délku 5, jaký je nejdelší možný obvod trojúhelníku?

Dva rohy trojúhelníku mají úhly (pi) / 3 a (pi) / 6. Pokud má jedna strana trojúhelníku délku 5, jaký je nejdelší možný obvod trojúhelníku?
Anonim

Odpovědět:

#=11.83#

Vysvětlení:

Je to zjevně pravoúhlý trojúhelník # pi- (pi) / 3-pi / 6 = pi / 2 #

Jeden # side = použití hypotézy = 5 #; Takže ostatní strany # = 5sin (pi / 3) a 5cos (pi / 3) #

Proto obvod trojúhelníku# = 5 + 5 (pi / 3) + 5cos (pi / 3) #

# = 5 + (5x0,866) + (5x0,5) #

#=5+4.33+2.5)#

#=11.83#