Měsíc má mnoho účinků na planetu Zemi, ale vyniknou tři hlavní. Dnes, Měsíc:
- Vytváří příliv v oceánech Země
- Určuje délku dnů Země
- Svítí noci Země
Měsíc vytváří příliv
Měsíc má svou vlastní gravitační sílu, která působí na Zemi jako oběžné dráhy. Jak se Země otáčí na své vlastní ose, gravitace a odstředivá síla udržuje vody oceánu na stejné úrovni. Gravitační síla měsíce je však dostatečně silná, aby tuto rovnováhu narušila, což způsobí, že voda zrychlí směrem k Měsíci a "vyboulí".
Tato boule se pohybuje, jak se oběžné dráhy Měsíce a Země otáčí, což způsobuje „vysoký příliv“ v místech, kde dochází k vyboulení. Bez Měsíce by se naše oceány ještě vydutovaly (kvůli gravitačnímu zatmění Slunce), ale vyboulení by bylo mnohem menší ve srovnání s těmi vytvořenými měsícem.
Měsíc prodlužuje dny
Víme, že v důsledku přílivového tření způsobeného měsícem se rotace Země v průběhu času zpomaluje (velmi mírně). Jak se zpomaluje, naše dny se prodlužují (protože Země se točí pomaleji, zažíváme delší dobu světla od slunce).
Když to extrapolováme zpět, vidíme, že dnešní 24hodinový den je produktem zpomalení rotace v čase (točilo se mnohem rychleji!). Bez Měsíce, který by zpomalil rotaci, by byl den jen 6 - 8 hodin!
Měsíc osvětluje noci
Jas Slunce způsobuje naše denní světlo a při pouhých 1/400 000. jasu Slunce se jas Měsíce ve skutečnosti nesrovnává. Nicméně, nejjasnější objekt na obloze, Venuše, je jen 1 / 14,000th tak jasný jako úplněk!
To naznačuje, že bez ní bude naše zkušenost v noci velmi odlišná (mnohem, mnohem tmavší) a naše noční vidění by se nikdy nevyvinulo na to, co je dnes.
Jeden konečný efekt Měsíc na Zemi: Měsíc je již dlouho zdrojem inspirace pro poezii, literaturu a další umělecká díla. Můžete si přečíst jednu z mých nejoblíbenějších básní, které zde odkazují na měsíc.
Hmotnost měsíce je 7,36 × 1022kg a jeho vzdálenost k Zemi je 3,84 × 108m. Jaká je gravitační síla měsíce na Zemi? Měsíční síla je to, kolik procent sluneční síly?
F = 1.989 * 10 ^ 20 kgm / s ^ 2 3.7 * 10 ^ -6% Pomocí Newtonovy gravitační síly rovnice F = (Gm_1m_2) / (r ^ 2) a za předpokladu, že hmotnost Země je m_1 = 5.972 * 10 ^ 24kg a m_2 je daná hmotnost měsíce s hodnotou G 6.674 * 10 ^ -11Nm ^ 2 / (kg) ^ 2 dává 1,989 * 10 ^ 20 kgm / s ^ 2 pro F měsíce. Toto opakuje to s m_2 jak hmota slunce dává F = 5.375 * 10 ^ 27kgm / s ^ 2 Toto dává měsíční gravitační sílu jako 3.7 * 10 ^ -6% gravitační síly slunce.
Hmotnost objektu na zemi se mění přímo s jeho hmotností na měsíci. Pokud dítě váží 24 liber na zemi váží pouze 3,84 libry na Měsíci, jak moc 194 liber člověk váží na Měsíci?
"Měsíční váha" = 31.04 "libry" Poměr "Země váha" / "Měsíční váha" "je" (24 "liber") / (3.84 "libry") = 6.25 Takže Měsíční váha muže, který váží 194 liber na Zemi by bylo (194 "libry") / "Měsíční hmotnost" = 6.25 Řešení pro váhu Měsíce, "Měsíční váha" = (194 "liber") / 6.25 = 31.04 "liber" Doufám, že to pomůže, Steve
Hmotnost objektu na Měsíci. se mění přímo jako hmotnost objektů na Zemi. 90-libry objekt na Zemi váží 15 liber na Měsíci. Pokud objekt váží 156 liber na Zemi, kolik váží na Měsíci?
26 liber Váha prvního předmětu na Zemi je 90 liber, ale na měsíci, to je 15 liber. To nám dává poměr mezi relativními sílami gravitačního pole Země a Měsíce, W_M / (W_E) Což dává poměr (15/90) = (1/6) cca 0,167 Jinými slovy, vaše váha na měsíci je 1/6 toho, co je na Zemi. Tak násobíme hmotnost těžšího objektu (algebraicky) takto: (1/6) = (x) / (156) (x = hmotnost na měsíci) x = (156) krát (1/6) x = 26 Hmotnost objektu na Měsíci je tedy 26 liber.