Jak řešíte hřích (x) - cos (x) -tan (x) = -1?

Jak řešíte hřích (x) - cos (x) -tan (x) = -1?
Anonim

Odpovědět:

# "Sada řešení" = {2kpi} uu {kpi + pi / 4}, k v ZZ #.

Vysvětlení:

Vzhledem k tomu # sinx-cosx-tanx = -1 #.

#:. sinx-cosx-sinx / cosx + 1 = 0 #.

#:. (sinx-cosx) - (sinx / cosx-1) = 0 #.

#:. (sinx-cosx) - (sinx-cosx) / cosx = 0 #.

#:. (sinx-cosx) cosx- (sinx-cosx) = 0 #.

#:. (sinx-cosx) (cosx-1) = 0 #.

#:. sinx = cosx nebo cosx = 1 #.

# "Případ 1:" sinx = cosx #.

Pozorujte to #cosx! = 0, protože, "pokud jinak;" tanx "stane se" #

undefined.

Proto, dělení #cosx! = 0, sinx / cosx = 1, nebo, tanx = 1 #.

#:. tanx = tan (pi / 4) #.

#:. x = kpi + pi / 4, k v ZZ, "v tomto případě" #.

# "Případ 2:" cosx = 1 #.

# "V tomto případě" cosx = 1 = cos0,:. x = 2kpi + -0, k v ZZ #.

Celkem máme, # "Sada řešení" = {2kpi} uu {kpi + pi / 4}, k v ZZ #.

Odpovědět:

# rarrx = 2npi, npi + pi / 4 # kde #nv ZZ #

Vysvětlení:

# rarrsinx-cosx-tanx = -1 #

# rarrsinx-cosx-sinx / cosx + 1 = 0 #

#rarr (sinx * cosx-cos ^ 2x-sinx + cosx) / cosx = 0 #

# rarrsinx * cosx-sinx-cos ^ 2x + cosx = 0 #

#rarrsinx (cosx-1) -cosx (cosx-1) = 0 #

#rarr (cosx-1) (sinx-cosx) = 0 #

Když # rarrcosx-1 = 0 #

# rarrcosx = cos0 #

# rarrx = 2npi + -0 = 2npi # kde #nv ZZ #

Když # rarrsinx-cosx = 0 #

#rarrcos (90-x) -cosx = 0 #

# rarr2sin ((90-x + x) / 2) * sin ((x-90 + x) / 2) = 0 #

#rarrsin (x-pi / 4) = 0 # Tak jako #sin (pi / 4)! = 0 #

# rarrx-pi / 4 = npi #

# rarrx = npi + pi / 4 # kde #nv ZZ #