Sqrt (t) = sqrt (t - 12) + 2? řešit radikální rovnice, možných.

Sqrt (t) = sqrt (t - 12) + 2? řešit radikální rovnice, možných.
Anonim

Odpovědět:

TENTO ODPOVĚĎ JE NESPRÁVNÁ. Viz výše uvedené řešení.

Vysvětlení:

Začněte tím, že se obě strany zbavíte tak, že se zbavíte jednoho z radikálů, pak zjednodušíte a zkombinujete podobné termíny.

# sqrtt ^ barva (zelená) 2 = (sqrt (t-12) +2) ^ barva (zelená) 2 #

# t = t-12 + 4sqrt (t-12) + 4 #

# t = t-8 + 4sqrt (t-12) #

Pak operujte na obou stranách rovnice a izolujte ostatní radikály.

#tcolor (zelená) (- t) = barva (červená) cancelcolor (černá) t-8 + 4sqrt (t-12) barva (červená) cancelcolor (zelená) (- t) #

# 0color (zelená) (+ 8) = barva (červená) cancelcolor (černá) ("-" 8) + 4sqrt (t-12) barva (červená) cancelcolor (zelená) (+ 8) #

#color (zelená) (barva (černá) 8/4) = barva (zelená) ((barva (červená) cancelcolor (černá) 4color (černá) sqrt (t-12)) / barva (červená) cancelcolor (zelená) 4 #

# 8 = sqrt (t-12) #

A obě strany znovu obejdou, aby se zbavili druhého radikálu.

# 8 ^ barva (zelená) 2 = sqrt (t-12) ^ barva (zelená) 2 #

# 64 = t-12 #

Nakonec přidejte #12# na obou stranách izolovat # t #.

# 64color (zelená) (+ 12) = tcolor (červená) cancelcolor (černá) (- 12) barva (červená) cancelcolor (zelená) (+ 12) #

# 76 = t #

# t = 76 #

Při práci s radikály vždy zkontrolujte, zda vaše řešení nejsou cizí (ujistěte se, že nezpůsobují druhou odmocninu záporného čísla). V tomto případě obojí #76# a #76-12# pozitivní #76# je platné řešení pro # t #.

Odpovědět:

#x in {16} #

Vysvětlení:

Uspořádat rovnici:

#sqrt (t) - 2 = sqrt (t - 12) #

Obě strany:

# (sqrt (t) - 2) ^ 2 = (sqrt (t - 12)) ^ 2 #

#t - 4sqrt (t) + 4 = t - 12 #

Zjednodušit:

# 16 = 4sqrt (t) #

# 4 = sqrt (t) #

Opět na obou stranách.

# 16 = t #

Zkontrolujte, zda je řešení přesné.

#sqrt (16) = sqrt (16 - 12) + 2 -> 4 = 4 barvy (zelená) () #

Doufejme, že to pomůže!