Jaké jsou integrální hodnoty k, pro které má rovnice (k-2) x ^ 2 + 8x + (k + 4) = 0) oba kořeny reálné, odlišné a negativní?

Jaké jsou integrální hodnoty k, pro které má rovnice (k-2) x ^ 2 + 8x + (k + 4) = 0) oba kořeny reálné, odlišné a negativní?
Anonim

Odpovědět:

# -6 <k <4 #

Vysvětlení:

Aby byly kořeny skutečné, odlišné a možná negativní, #Delta> 0 #

# Delta = b ^ 2-4ac #

# Delta = 8 ^ 2-4 (k-2) (k + 4) #

# Delta = 64-4 (k ^ 2 + 2k-8) #

# Delta = 64-4k ^ 2-8k + 32 #

# Delta = 96-4k ^ 2-8k #

Od té doby #Delta> 0 #,

# 96-4k ^ 2-8k> 0 #

# 4k ^ 2 + 8k-96 <0 #

# (4k + 24) (k-4) <0 #

# 4 (k + 6) (k-4) <0 #

graf {y = 4 (x + 6) (x-4) -10, 10, -5, 5}

Z grafu výše vidíme, že rovnice je pravdivá pouze tehdy, když # -6 <k <4 #

Proto,, pouze celá čísla mezi # -6 <k <4 # mohou být kořeny negativní, odlišné a skutečné