Co je orthocenter trojúhelníku s rohy na (7, 8), (3, 4) a (8, 3) #?

Co je orthocenter trojúhelníku s rohy na (7, 8), (3, 4) a (8, 3) #?
Anonim

Nechť jsou souřadnice tří vrcholů trojúhelníku ABC

#A -> (7,8) "" B -> (3,4) "" C -> (8,3) #

Nechte souřadnici#color (červená) ("Ortho centrum O" -> (h, k)) #

#m_ (AB) -> "Sklon AB" = ((8-4)) / ((7-3)) = 1 #

#m_ (BC) -> "Sklon BC" = ((4-3)) ((3-8)) = - 1/5 #

#m_ (CO) -> "Sklon CO" = ((k-3)) / ((h-8)) #

#m_ (AO) -> "Sklon AO" = ((k-8)) / ((h-7)) #

O ortocentrem bude přímka procházející C a O kolmá na AB, Tak #m_ (CO) xxm_ (AB) = - 1 #

# => ((k-3)) / ((h-8)) xx 1 = -1 #

# => k = -h + 11 …. (1) #

O ortocentrem bude přímka procházející A a O kolmá k BC, Tak #m_ (AO) xxm_ (BC) = - 1 #

# => ((k-8)) / ((h-7)) xx (- 1/5) = - 1 #

# => k = 5h-27 …. (2) #

Srovnání (1) a (2)

# 5h-27 = -h + 11 #

# => 6h = 38 #

# => h = 6 1/3 #

Vložení hodnoty h (1)

# k = -6 1/3 + 11 = 4 2/3 #

Souřadnice ortocentru je tedy

#color (zelená) ((6 1/3 "," 4 2/3)) #