Odpovědět:
Existuje několik způsobů, jak to napsat. Všichni zachytí stejný nápad.
Vysvětlení:
Pro
Graf funkce f (x) = (x + 2) (x + 6) je uveden níže. Jaké prohlášení o funkci je pravdivé? Funkce je kladná pro všechny reálné hodnoty x, kde x> –4. Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Zobrazí se graf h (x). Graf se jeví jako souvislý, kde se mění definice. Ukážte, že h je ve skutečnosti nepřetržité, když zjistíte levou a pravou hranici a ukazuje, že definice kontinuity je splněna?
Laskavě se podívejte na Vysvětlení. Abychom ukázali, že h je spojitá, musíme zkontrolovat její spojitost v x = 3. Víme, že h bude kont. v x = 3, jestliže a jediný jestliže, lim_ (x k 3-) h (x) = h (3) = lim_ (x k 3 +) h (x) ............ ................... (ast). Jako x k 3-, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x až 3-) h (x) = lim_ (x až 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x až 3-) h (x) = 4 ............................................ .......... (ast ^ 1). Podobně lim_ (x až 3+) h (x) = lim_ (x až 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_ (x až 3+) h
Jaká je první derivace a druhá derivace 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)"