Odpovědět:
“První ústava byla jmenována články konfederace.
Nebylo to vlastně ústava.
Vysvětlení:
Články konfederace byly první psanou strukturou vlády ve Spojených státech.
Články byly nástinem spolupráce 13 kolonií. Nebyla to ústava, protože nevytvořila federální vládu. Články uvedené ve svém názvu byly systémem pro konfederaci nezávislých států,
Články pracovaly tak špatně, že byla vyzvána konference o tom, jak tyto články vylepšit. Konference místo revize článků napsala celou novou ústavu, která založila federální vládu.
Články vycházely z filozofie Jeana Jacquea Rousseaua. Ústředním bodem článků byla myšlenka, že lidé (a státy lidí) byli v zásadě dobří a spolupracovali pro dobro konfederace, nikoli jejich individuální zájem. Ukázalo se, že státy nepracovaly pro dobro celkové konfederace a články nefungovaly
Ústava byla založená na filozofii Barona Montesquieu že všichni lidé (a skupiny lidí) by byli poškozeni mocí. Ústava je založena na oddělení pravomocí, aby se zabránilo lidem a skupinám lidí, aby měli přílišnou moc a byli zkaženi.
První pokus o vytvoření vládní struktury v Americe byl články konfederace. Články konfederace byly nahrazeny Ústavou Spojených států.
První a druhý termín geometrické posloupnosti jsou vždy první a třetí termíny lineární posloupnosti. Čtvrtý termín lineární posloupnosti je 10 a součet jeho prvních pěti výrazů je 60 Najít prvních pět termínů lineární sekvence?
{16, 14, 12, 10, 8} Typická geometrická posloupnost může být reprezentována jako c0a, c_0a ^ 2, cdoty, c_0a ^ k a typická aritmetická sekvence jako c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volání c_0 a jako prvního prvku pro geometrickou posloupnost máme {(c_0 a ^ 2 = c_0a + 2Delta -> "První a druhá z GS jsou první a třetí z LS"), (c_0a + 3Delta = 10- > "Čtvrtý termín lineární posloupnosti je 10"), (5c_0a + 10Delta = 60 -> "Součet jeho prvních pěti výrazů je 60"):} Řešen&
Znát vzorec k součtu N celých čísel a) co je součet prvních N po sobě jdoucích čtvercových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Součet prvních N po sobě následujících celých čísel krychle Sigma_ (k = 1) ^ N k ^ 3?
Pro S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 řešení pro sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3
Květinářství prodalo 15 ujednání ve svém prvním měsíci podnikání. Počet prodaných smluv se každý měsíc zdvojnásobil. Jaký byl celkový počet uspořádání květinářství prodaných během prvních 9 měsíců?
7665 uspořádání Máme geometrickou řadu, protože hodnoty se násobí číslem pokaždé (exponenciálně). Takže máme a_n = ar ^ (n-1) První termín je dán jako 15, takže a = 15. Víme, že se každý měsíc zdvojnásobuje, takže r = 2 Součet geometrické řady je dán vztahem: S_n = a_1 ((1-r ^ n) / (1-r)) S_9 = 15 ((1-2 ^ 9) / (1-2)) = 15 (-511 / -1) = 15 (511) = 7665