Diskriminační je součástí kvadratického vzorce.
Kvadratický vzorec
Diskriminační
Diskriminační vám řekne počet a typy řešení kvadratické rovnice.
Diskriminační kvadratická rovnice je -5. Která odpověď popisuje počet a typ řešení rovnice: 1 komplexní řešení 2 reálná řešení 2 komplexní řešení 1 skutečné řešení?
Vaše kvadratická rovnice má 2 komplexní řešení. Diskriminační kvadratická rovnice nám může poskytnout pouze informaci o rovnici tvaru: y = ax ^ 2 + bx + c nebo parabola. Protože nejvyšší stupeň tohoto polynomu je 2, nesmí mít více než 2 řešení. Diskriminační je prostě látka pod symbolem druhé odmocniny (+ -sqrt ("")), ale nikoli samotný symbol druhé odmocniny. + -sqrt (b ^ 2-4ac) Pokud je diskriminační, b ^ 2-4ac, menší než nula (tj. jakékoliv záporné číslo), pak byste měli záporný symbol p
Součet číslic dvoumístného čísla je 10. Pokud jsou číslice obráceny, vytvoří se nové číslo. Nové číslo je o jedno menší než dvojnásobek původního čísla. Jak najdete původní číslo?
Původní číslo bylo 37 Nechť m a n jsou první a druhé číslice původního čísla. Říká se, že: m + n = 10 -> n = 10-m [A] Nyní. Abychom vytvořili nové číslo, musíme číslice obrátit. Protože můžeme předpokládat, že obě čísla mají být desetinná, hodnota původního čísla je 10xxm + n [B] a nové číslo je: 10xxn + m [C] Také se říká, že nové číslo je dvojnásobek původního čísla mínus 1 Kombinace [B] a [C] -> 10n + m = 2 (10m + n) -1 [D] Nahrazení [A] v [D] -&g
Použijte diskriminační k určení počtu a typu řešení, která má rovnice? x ^ 2 + 8x + 12 = 0 skutečné řešení B. skutečné řešení C. dvě racionální řešení D. dvě iracionální řešení
C. dvě racionální řešení Řešení kvadratické rovnice a * x ^ 2 + b * x + c = 0 je x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In uvažovaný problém, a = 1, b = 8 a c = 12 nahrazení, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 nebo x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 a x = (-8 - 4) / 2 x = (- 4) / 2 a x = (-12) / 2 x = - 2 a x = -6