Jedná se o související problémy typu změny (změny).
Zajímavé proměnné jsou
Uvedené rychlosti změny jsou v jednotkách za minutu, takže (neviditelná) nezávislá proměnná je
Dostali jsme:
A my jsme žádáni, abychom ho našli
Pravidlo produktu budeme potřebovat vpravo.
Dostali jsme každou hodnotu kromě
Nahrazení:
Vyřešit pro
Základna klesá na
Jaká je rychlost změny šířky (ve stopách / s), když je výška 10 stop, pokud výška v tomto okamžiku klesá rychlostí 1 ft / sec.A obdélník má jak měnící se výšku, tak měnící se šířku , ale výška a šířka se mění tak, že plocha obdélníku je vždy 60 čtverečních stop?
Rychlost změny šířky s časem (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) ) = - 1 "ft / s" So (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) So (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Takže když h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"
Prokažte následující prohlášení. Ať je ABC jakýkoliv pravoúhlý trojúhelník, pravý úhel v bodě C. Nadmořská výška nakreslená od C do hypotézy rozděluje trojúhelník na dva pravé trojúhelníky, které jsou si navzájem podobné a původní trojúhelník?
Viz. níže. Podle otázky je DeltaABC pravý trojúhelník s / _C = 90 ^ @ a CD je nadmořská výška pro hypotézu AB. Důkaz: Předpokládejme, že / _ABC = x ^ @. So, úhelBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Nyní, CD kolmá AB. Takže úhelBDC = úhelADC = 90 ^ @. V DeltaCBD, úhelBCD = 180 ^ @ - úhelBDC - úhelCBD = 180 ^ @ - 90 ^ - x ^ @ = (90 -x) ^ @ Podobně úhelACD = x ^ @. Nyní, v DeltaBCD a DeltaACD, úhel CBD = úhel ACD a úhel BDC = úhelADC. Takže podle AA kritérií podobnosti, DeltaBCD ~ DeltaACD. Podobně můžem
Trojúhelník je rovnoramenný a akutní. Pokud jeden úhel trojúhelníku měří 36 stupňů, jaký je rozměr největšího úhlu trojúhelníku? Jaká je míra nejmenšího úhlu (trojúhelníků) trojúhelníku?
Odpověď na tuto otázku je snadná, ale vyžaduje určité matematické obecné znalosti a zdravý rozum. Isosceles trojúhelník: - trojúhelník jehož jediné dvě strany jsou se rovnat je nazýván rovnoramenným trojúhelníkem. Rovnoramenný trojúhelník má také dva stejné anděly. Akutní trojúhelník: - trojúhelník, jehož všichni andělé jsou větší než 0 ^ @ a menší než 90 ^ @, tj. Všichni andělé jsou akutní, nazývá se akutní trojúhelník. Daný trojú