Odpovědět:
Vysvětlení:
Teď, ať
Odvolej to:
Vypočítejte nejmenší čtvercovou regresní přímku, kde roční závislost je závislá proměnná a roční příjem je nezávislá proměnná.
Y = -1,226666 + 0,1016666 * X bar X = (12 + 13 + 14 + ... + 20) / 9 = 9 * (12 + 20) / (2x9) = 16 bar Y = (0 + 0,1 + 0.2 + 0.2 + 0.5 + 0.5 + 0.6 + 0.7 + 0.8) / 9 = 0.4 hat beta_2 = (sum_ {i = 1} ^ {i = 9} x_i * y_i) / (sum_ {i = 1} ^ {i = 9} x_i ^ 2) "s" x_i = X_i - bar X "a" y_i = Y_i - bar Y => klobouk beta_2 = (4 * 0,4 + 3 * 0,3 + 2 * 0,2 + 0,2 + 0,1 + 2 * 0,2 + 3 * 0,3 + 4 * 0,4) / ((4 ^ 2 + 3 ^ 2 + 2 ^ 2 + 1 ^ 2) * 2) = (1,6 + 0,9 + 0,4 + 0,2 + 0,1 + 0,4 + 0,9 + 1,6) / 60 = 6.1 / 60 = 0.10166666 => klobouk beta_1 = bar Y - klobouk beta_2 * bar X = 0.4 - (6.1 / 60) * 16 = -1.226666 "Takže
Julie jednou hodí spravedlivé červené kostky a jednou spravedlivé modré kostky. Jak vypočítáte pravděpodobnost, že Julie dostane šest na obou červených kostkách a modrých kostkách. Za druhé, vypočítat pravděpodobnost, že Julie dostane alespoň jednu šestku?
P ("Dvě šestky") = 1/36 P ("Aspoň jedna šestka") = 11/36 Pravděpodobnost získání šestky, když hodíte spravedlivou umírající hlavu, je 1/6. Pravidlo násobení pro nezávislé události A a B je P (AnnB) = P (A) * P (B) Pro první případ, událost A dostane šest na červenou kostku a událost B dostane šest na modré kostce. . P (AnnB) = 1/6 * 1/6 = 1/36 V druhém případě chceme nejprve zvážit pravděpodobnost, že nedostaneme žádné šestky. Pravděpodobnost, že se jedna matrice nevaří a šest, je zřejmě 5/
Ukažte, že (a ^ 2sin (B-C)) / (sinB + sinC) + (b ^ 2sin (C-A)) / (sinC + sinA) + (c ^ 2sin (A-B)) / (sinA + sinB) = 0?
1. část (a ^ 2sin (BC)) / (sinB + sinC) = (4R ^ 2sinAsin (BC)) / (sinB + sinC) = (4R ^ 2sin (pi- (B + C)) sin (BC)) / (sinB + sinC) = (4R ^ 2sin (B + C) sin (BC)) / (sinB + sinC) = (4R ^ 2 (sin ^ 2B-sin ^ 2C)) / (sinB + sinC) = 4R ^ 2 (sinB-sinC) Podobně 2. část = (b ^ 2sin (CA)) / (sinC + sinA) = 4R ^ 2 (sinC-sinA) 3. část = (c ^ 2sin (AB)) / (sinA + sinB ) = 4R ^ 2 (sinA-sinB) Přidáním tří částí máme daný výraz = 0