Odpovědět:
Vysvětlení:
Pamatuj si to
Odpovědět:
Vysvětlení:
Použít pravidlo:
Zjednodušit.
Proveďte faktorizaci radicandu.
Aplikovat
Jaká je druhá odmocnina 3 + druhá odmocnina 72 - druhá odmocnina 128 + druhá odmocnina 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Víme, že 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, takže sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Víme, že 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tak sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Víme, že 128 = 2 ^ 7 , tak sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Zjednodušení 7sqrt (3) - 2sqrt (2)
Jaká je druhá odmocnina 7 + 2 odmocniny 7 ^ 2 + druhá odmocnina 7 ^ 3 + druhá odmocnina 7 ^ 4 + druhá odmocnina 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) První věc, kterou můžeme udělat, je zrušit kořeny na těch, které mají stejné pravomoci. Protože: sqrt (x ^ 2) = x a sqrt (x ^ 4) = x ^ 2 pro libovolné číslo, můžeme říci, že sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyní lze 7 ^ 3 přepsat jako 7 ^ 2 * 7, a že 7 ^ 2 se může dostat z kořene! Totéž platí pro 7 ^ 5, ale je přepsáno jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7
Proč (5 krát druhá odmocnina 3) plus druhá odmocnina 27 se rovná 8 násobku druhé odmocniny 3?
Viz vysvětlení. Všimněte si, že: sqrt (27) = sqrt (3 ^ 3) = 3sqrt (3) Pak máme: 5sqrt (3) + sqrt (27) = 5sqrt (3) + 3sqrt (3) = 8sqrt (3)