Odpovědět:
a případně)
Vysvětlení:
Li
# x + y = 14 #
Pokud je rozdíl mezi desítkami číslic
# x-y = 2 #
Li
# "Number" = 10x + y #
Součet číslic dvoumístného čísla je 11. Desetina číslice je jedna méně než trojnásobek číslice jedné číslice. Jaké je původní číslo?
Číslo = 83 Nechť je číslo v jednotce x a číslo na desítce je y. Podle první podmínky, x + y = 11 Podle druhé podmínky, x = 3y-1 Řešení dvou současných rovnic pro dvě proměnné: 3y-1 + y = 11 4y-1 = 11 4y = 12 y = 3 x = 8 Původní číslo je 83
Součet číslic třímístného čísla je 15. Číslice jednotky je menší než součet ostatních číslic. Desítková číslice je průměrem ostatních číslic. Jak zjistíte číslo?
A = 3 ";" b = 5 ";" c = 7 Dáno: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Zvažte rovnici (3) -> 2b = (a + c) Zapište rovnici (1) jako (a + c) + b = 15 Substitucí se to stane 2b + b = 15 barev (modrá) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Nyní máme: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 ............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Desetimístná číslice dvoumístného čísla přesahuje dvojnásobek číslic jednotek 1. Pokud jsou číslice obráceny, je součet nového čísla a původního čísla 143.Jaké je původní číslo?
Původní číslo je 94. Pokud dvoumístné celé číslo má v desítkách číslic a b v čísle jednotky, číslo je 10a + b. Nechť x je jednotková číslice původního čísla. Pak je jeho desítková číslice 2x + 1 a číslo 10 (2x + 1) + x = 21x + 10. Jsou-li číslice obráceny, desítková číslice je x a číslice jednotky jsou 2x + 1. Opačné číslo je 10x + 2x + 1 = 12x + 1. Proto (21x + 10) + (12x + 1) = 143 33x + 11 = 143 33x = 132 x = 4 Původní číslo je 21 * 4 + 10 = 94.