Odpovědět:
Vysvětlení:
Jaká je druhá odmocnina 3 + druhá odmocnina 72 - druhá odmocnina 128 + druhá odmocnina 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Víme, že 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, takže sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Víme, že 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tak sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Víme, že 128 = 2 ^ 7 , tak sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Zjednodušení 7sqrt (3) - 2sqrt (2)
Jaká je druhá odmocnina 7 + 2 odmocniny 7 ^ 2 + druhá odmocnina 7 ^ 3 + druhá odmocnina 7 ^ 4 + druhá odmocnina 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) První věc, kterou můžeme udělat, je zrušit kořeny na těch, které mají stejné pravomoci. Protože: sqrt (x ^ 2) = x a sqrt (x ^ 4) = x ^ 2 pro libovolné číslo, můžeme říci, že sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyní lze 7 ^ 3 přepsat jako 7 ^ 2 * 7, a že 7 ^ 2 se může dostat z kořene! Totéž platí pro 7 ^ 5, ale je přepsáno jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7
Jaká je druhá odmocnina 8 dělená druhou odmocninou 5 mínus druhá odmocnina 2?
(2sqrt10 + 4) / 3 sqrt8 / (sqrt 5-sqrt 2):. (Sqrt 5 + sqrt 2) / (sqrt 5 + sqrt 2) = 1:. = Sqrt8 / (sqrt 5-sqrt 2) xx (sqrt 5 + sqrt 2) / (sqrt 5 + sqrt 2) (sqrt8 (sqrt5 + sqrt2)) / ((sqrt5-sqrt2) (sqrt5 + sqrt2)):. = (Sqrt 8 (sqrt 5 + sqrt 2)) / 3 :. = (sqrt 8 sqrt 5 + sqrt 8 sqrt 2) / 3:. = (sqrt (8 * 5) + sqrt (8 * 2)) / 3:. = (sqrt 40 + sqrt 16) / 3:. = (sqrt (2 * 2 * 2 * 5) + sqrt 16) / 3:. = sqrt2 * sqrt2 = 2:. = (sqrt (2 * 2 * 2 * 5) +4) / 3:. = (2 sqrt (2 * 5) +4) / 3:. = (2 sqrt10 + 4) / 3