Odpovědět:
1/4
Vysvětlení:
Jelikož je celkem 10 balónků, 5 růžových a 5 modrých, šance na získání růžového balónu je 5/10 = (1/2) a šance na získání modrého balónu je 5/10 = (1/2)
Aby bylo možné vidět šanci na vyskladnění růžového balónu a pak modrý balónek, znásobí se šance na vychystání:
Dvě urny obsahují zelené kuličky a modré kuličky. Urn I obsahuje 4 zelené koule a 6 modrých koulí a Urn ll obsahuje 6 zelených koulí a 2 modré koule. Z každé urny se náhodně vytáhne míč. Jaká je pravděpodobnost, že oba míčky jsou modré?
Odpověď je = 3/20 Pravděpodobnost kreslení bluebu z Urn I je P_I = barva (modrá) (6) / (barva (modrá) (6) + barva (zelená) (4)) = 6/10 Pravděpodobnost kreslení blueball z Urn II je P_ (II) = barva (modrá) (2) / (barva (modrá) (2) + barva (zelená) (6)) = 2/8 Pravděpodobnost, že obě míčky jsou modré P = P_I * P_ (II) = 6/10 * 2/8 = 3/20
K dispozici je 5 modrých pastelek, 7 žlutých pastelek a 8 červených pastelek. v krabici. Pokud je náhodně nakreslen a nahrazen 15krát, zjistěte pravděpodobnost, že budete přesně kreslit čtyři modré pastelky?
0,2252 "Celkem existuje 5 + 7 + 8 = 20 pastelek." => P = C (15,4) (5/20) ^ 4 (15/20) ^ 11 = ((15!) 5 ^ 4 15 ^ 11) / ((11!) (4!) 20 ^ 15) ) = 0.2252 "Vysvětlení:" "Protože jsme nahradili, šance na kreslení modré pastelky jsou pokaždé 5". Vyjadřujeme, že kreslíme 4 krát modrý "" a pak 11krát ne modrý. 5/20) ^ 4 (15/20) ^ 11. " "Modré se samozřejmě nemusí nejprve kreslit, takže" "jsou C (15,4) způsoby jejich kreslení, takže násobíme C (15,4)." "a C (15,4)" = (15!) / (11! 4!) "
Krabička obsahuje 15 mléčných čokolád a 5 prostých čokolád. Náhodně jsou vybrány dvě čokolády. Vypočítat pravděpodobnost, že jeden z každého typu je vybrán?
0.3947 = 39.47% = P ["1. je mléko A 2. je prostý"] + P ["1. je prostý A 2. je mléko"] = (15/20) (5/19) + (5/20) (15 / 19) = 2 * (15/20) (5/19) = 2 * (3/4) (5/19) = (3/2) (5/19) = 15/38 = 0,3947 = 39,47% "Vysvětlení : "" Když si nejprve vybereme jednu, v krabici je 20 čokolád. " "Když si vybereme jednu po druhé, je v krabici 19 čokolád." "Používáme vzorec" P [A a B] = P [A] * P [B | A] ", protože obě remízy nejsou nezávislé." "Tak vezměte např. A =" 1. je mléko "a B =&quo