Odpovědět:
Vysvětlení:
Použít pravidlo produktu:
Použijte řetězové pravidlo k rozlišení
Zjednodušit
Ukažte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jsem trochu zmatený, když udělám Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný jako cos (180 ° -theta) = - costheta in druhý kvadrant. Jak mám doložit otázku?
Viz níže. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Jaká je první derivace a druhá derivace 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)"
Jak se vám zdá derivace Cos ^ -1 (3 / x)?
= (3 / x ^ 2) / (sqrt (1- (3 / x) ^ 2)) Musíme vědět, že (arccos (x)) '= - (1) / (sqrt (1-x ^ 2) )) Ale v tomto případě máme pravidlo řetězu, které máme dodržet, kde máme množinu u = 3 / x = 3x ^ -1 (arccos (u)) '= - (1) / (sqrt (1-u ^ 2) ) * u 'Potřebujeme jen najít u', u '= 3 (-1 * x ^ (- 1-1)) = - 3x ^ -2 = -3 / x ^ 2 Pak budeme mít, (arccos (3 / x)) '= - (- 3 / x ^ 2) / (sqrt (1- (3 / x) ^ 2)) = (3 / x ^ 2) / (sqrt (1- (3 / x ) ^ 2))